ZKX's LAB

费马原理镜面反射

2020-07-16知识9
费马原理说光传播光程为极值,那有没有极大值的例子 光传播的实际路径是使光程取极值(极小值、极大值或稳定值),光程取极值的条件为光程的一阶变分等于零,即此即费马原理的数学表达式。半球面反射: 球面的半径=R,光线从... 是谁先发现光的反射这一定理的 法国费马(Fermat)1662年发布费马原理时,人们就从生产实践中知道了光的反射原理。1620年荷兰斯涅耳(Snell)最早发现了光的折射定律(SnellLaw),第二介质对第一介质的相对折射率n21=n2/n1=sinθ1/sinθ2,确定了折射光线与入射光线之间关系的定律,光路是可逆的。光的折射定律符合光路最短的费马原理,是几何光学的基本定律之一,从而使几何光学的精确计算成为了可能。光的全反射:当光从光密介质射到它与光疏介质的界面上、入射角大于或等于临界角时,将发生全反射的光学现象,临界角arcsin(n2/n1)。1662年 法国费马(Fermat)提出光传播的路径是光程取极值的路径。提出光路最短时间的费马原理(Fermat Principle),光线传播的路径是需时最少的路径,得到三种情形:1、光线在真空中的直线传播;2、光的反射定律-光线在界面上的反射,入射角必须等于出射角;3、光的折射定律(斯涅耳定律)。 费马原理表明光是沿光的极值传播的! 我这个是答案是我在考研究生时候回答的!在椭圆镜面内两个焦点之间,非直线传播时,光路为定值;改变椭圆曲率半径,使其增大则为极小值;使其变小则为极大值!老师给了满分,并且加了星! 镜面反射能说明光沿直线传播吗 可以 镜面反射定律可以推出费马原理 费马原理又可以得到光的直线传播 请问惠更斯原理和费马原理是什么关系?哪一个更基本和普遍? 本回答采用公众号“sol的马车”,授权转载。原文链接为:镜花水月天上虹(上)你可曾见过天边的彩虹,或… 请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式:(物距倒数)+(像距倒数)=-2×(曲率半径的倒数) 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线.若将物放置于轴线上,即可求出像距,从而验证上述关系. 费马原理怎么解释,我不是问怎么证明,而是为什么会有时间最短的效应 你习惯于用起因和结果来思考折射:光照到水面上是起因,方向的变化是结果。但费马定理听上去很古怪,因为它以目的的形式来描述光的行为。它就像是光线的指挥官,‘你应该将抵达目的的时间最小化或最大化。假若按人类行为学来说,光得检验每条可能的路线并计算每条得花多少时间,光线得知道目的在哪儿。假如目的地在某某其他地方,最快的路线就会不同,计算沿着一条假想的路线需多长时间也需要关于在这条路线上有什么东西的信息,比如水面在哪?在光开始移动前,它得事先知道所有这一切,光线不能沿着老路前进,然后再在后来返回。因为引起这样行为的路线不是最快的。在一开始光就已经做好了全部的计算在光线能够选择它移动的方向前,它已经知道它最终会在那里结束。 请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线。若将物放置于轴线上,即可求出像距,从而验证上述关系。 费马原理说光传播光程为极值,那有没有极大值的例子? 图中蓝色的曲线是一个椭圆,A、B两点为椭圆的焦点,黑色的曲线代表实际的镜面。按照椭圆的定义可以知道任何一条类似红色的光路都会短于黑色的光路,但它们却不满足反射定律... 镜面反射能说明光沿直线传播吗 可以镜面反射定律可以推出费马原理费马原理又可以得到光的直线传播

#费马原理#椭圆

随机阅读

qrcode
访问手机版