点到直线距离公式证明 点到直线距离公式的推导如下:对于点P(x0,y0)作PQ垂直直线Ax+By+C=0于Q作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N设M(x1,y1)x1=x0,y1=(-Ax0+C)/B.PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|同理,设N(x2,y2).y.
点到直线距离公式证明方法
证明点到直线的距离公式:已知点P(x 证明:设A≠0,B≠0,这时l与x轴、y轴都相交,过点P作x轴的平行线,交l于点R(x1,y0),作y轴平行线,交l于点S(x0,y2),由A x1+By0+C=0Ax0+By2+C=0,得x1=?By0?CA,y2=?Ax0?CB,∴|PR|=|x0-x1|=|Ax.
点到直线的距离公式