浅谈几种常用电法勘探的原理及优点 岩土体电阻率测试技术实施原理:由于温纳装置是等比装置,且 M N/A B=1/3,所以视电阻率与电位差及电流强度的关系式为:ρ s=k Δ U A M/I该方法较传统的解释方法具有快速、准确的特点,相对于传统的解释方法而言更适合工程物探在解决地层划分和电阻率测试中的应用。另外,场地的岩土电阻率是工程设计接地装置的一个重要参数。它的确定对电流尽快地散入大地,达到足够小的接地电阻及接地装置地下部分的合理布局起到十分重要的作用,它沿地层深度的变化规律是选择接地装置型式设计的主要依据。三维直流电法该法较传统直流电法勘探具有信息量大、精度高的优点,在工程勘察中有较好的应用效果,同时又拓展了老式电法仪的应用范围,延长了老式仪器的经济使用寿命;但又具有施工量大的缺点,性价比决定其适合于小区域的工程勘察。高密度电法高密度电法实际上是集中了电剖面法和电测深法,其原理与普通电阻率法相同,即以岩石、矿物的电性差异为基础,通过观测和研究人工建立的电流场在大地中的分布规律,解决水文、环境和工程地质问题,所不同的是在观测中设置了高密度的观测点,是一种阵列勘探方法。
简要分析岩石和矿石的激发极化特性? 电法勘探利用了岩石矿石的哪些电学性质? 激发极化特性岩石的激发极化效应与岩石颗粒和周围溶液界面上的双电层有关。基于岩石颗粒-溶液界面上双电层的分散结构和分散区内存在可以沿界面移动的阳离子这一特点,提出关于其产生机理的有代表性的两种假说:一是双电层形变假说,即在外电流作用下,岩石颗粒表面双电层分散区中的阳离子发生移动,形成双电层形变,当外电流断去后,堆积的离子放电,以恢复到平衡状态,从而观测到激发极化电场。双电层形变激发极化形成的速度和放电的快慢,决定于离子沿颗粒表面移动的速度和路径长度,因而较大的岩石颗粒将有较大的时间常数(即充电或放电快慢)。二是薄膜极化假说:简单地说,就是电流流过宽窄不同的空隙时,形成离子浓度变化,当外电流断掉以后,由于离子的扩散作用,离子浓度将逐渐消失,恢复到原来的状态,与此同时形成扩散电位,这便是离子导体上观测到的激发极化。进一步的研究表明,矿物颗粒细小(如由黏土矿物组成)的岩石,充、放电速度很快,而颗粒较粗(如砂或砂砾组成)的岩石,充、放电速度则较慢。这对评价激电异常和利用激电法找水很有实际意义,也是用激电法寻找地下水的地球物理前提。在激发极化找水中用得最多,最有效的是对称四极垂向测深装置,也就是IP测深。激电测深的供电。
直流激发极化法的原理 在充电和放电过程中,由于电化学作用引起的这种随时间缓慢变化的附加电场现象,称为激发极化效应(IP效应),激发极化法是以不同岩矿石的激电效应之差异为物质基础,通过观测和研究大地激电效应,以探查地下地质情况的一种勘探方法。关于岩石激发极化的成因,存在较多争论,大多数人认为,岩石的激发极化效应与岩石颗粒和周围溶液界面上的双电层有关。基于岩石颗粒-溶液界面上双电层的分散结构和分散区内存在可以沿界面移动的阳离子这一特点,提出关于其产生机理的有代表性的两种假说:一是双电层形变假说,即在外电流作用下,岩石颗粒表面双电层分散区中的阳离子发生移动,形成双电层形变,当外电流断去后,堆积的离子放电,以恢复到平衡状态,从而观测到激发极化电场。双电层形变激发极化形成的速度和放电的快慢,决定于离子沿颗粒表面移动的速度和路径长度,因而较大的岩石颗粒将有较大的时间常数(即充电或放电快慢)。二是薄膜极化假说:简单地说,就是电流流过宽窄不同的空隙时,形成离子浓度变化,当外电流断掉以后,由于离子的扩散作用,离子浓度将逐渐消失,恢复到原来的状态,与此同时形成扩散电位,这便是离子导体上观测到的激发极化。进一步的研究表明,。
常用电阻率法 为了取2113得良好地质效果,在电阻率法勘探中,常需5261根据不同地质任务和4102不同地电条件1653,采用不同的装置类型。所谓装置类型是指一定的电极排列形式。但由于电极移动方式的不同,在电阻率法中又有电阻率剖面法和电阻率测深法之分。(一)电阻率剖面法(简称电剖面法)在电剖面法中,目前我国常用的装置类型有如图2-1-2所示的几种。由图可见,无论哪种装置类型,其共同特点是:用供电电极(A、B)向地下供电,同时在测量电极(M、N)间观测电位差(ΔUMN),并算出视电阻率(ρs),各电极沿选定的测线同时(或仅测量电极)逐点向前移动和观测。电剖面法主要用来探查地下一定深度范围内的横向电性变化,以此解决多种地质问题。图2-1-2 几种常用电阻率剖面法的装置类型示意图1.二极装置(AM)如图2-1-2(a)所示,这种装置的特点是,供电电极B和测量电极N均置于“无穷远”处接地。这里所指的“无穷远”具有相对概念,如对B极而言,若相对A极在M极产生的电位小到实际上可以忽略时,便可视B极为无穷远,对N极而言,若A极在N极产生的电位相对M极很小以至可以忽略时,便认为N极位于无穷远,并取那里的电位为零。因此,二极装置实际是一种测量电位的装置。二极。
野外工作方法及技术要求 在激电法工作中,根据地质任务和工作地区的地电条件进行正确的方法选择、合理的工作布置及严格执行有关技术规定,是取得有效、可靠资料的重要保证。下面将通过几方面问题的讨论来说明野外工作的基本方法和技术要求。(一)方法的选择时间域激电法的观测仪器较易制造,而且由于通常是观测供电脉冲断开几百毫秒(ty≥n·102ms)之后的二次电位差ΔU2,受电磁耦合的干扰较小,故工作方法和解释理论都比较简单。但这种时间域观测仪器乃是宽通带的接收机,对大地噪声、工业游散电流和极化不稳等的抗干扰能力差,加之待测的二次电位差通常远比一次电位差小,故为提高信噪比往往要求大功率供电,从而使这种方法的装备十分笨重,生产效率较低、成本高。为了一定程度上克服上述缺点,我国从20世纪70年代初期开始引进频率域激电法。最初采用的是以观测交变总场电位差幅值为基础的变频激电法。这种方法至少要在两个频率(fD和fG)上做观测,以获得视频散率,在两个频率上做观测使其野外工作不便,生产效率也较低。为克服此缺点,20世纪80年代初我国又研制和引进了以观测地面交变总场电位差相对于交变供电电流之相位移(视相位φs)为主要参数的相位激电仪,开展相位激电法。这一方法可以只在1个。
装置的选择 原则上讲,激发极化法可采用电阻率法中的各种装置,但这些装置在激电法中应用的广泛程度及承担的地质任务均有所不同。故应按电法工作的地质任务、工区地电条件及激电法本身的特点,合理地选择观测装置。现对激电法中几种常用装置的特点和效能作些对比性讨论,以供选择装置参考。3.4.4.1 中间梯度装置中梯装置的一个主要优点,是敷设一次供电导线和供电电极A、B,便能在相当大的面积上测量,特别是还能用几台“远点启动”的接收机同时在该面积上观测,因而具有较高的生产效率。此外,它在A、B间的中间地段测量,接近水平的极化条件,故对各种形状、产状和相对导电性的极化体均可得到相当大的异常;且异常形态较简单,易于解释。中间梯度可采用纵向装置,也可采用横向装置。中梯装置的特点是电极距较大,要求大供电电流,且电磁耦合干扰较强。但在时间域观测中选用几百毫秒或更长的延时,可有效地降低这种干扰。故在直流激电法中,中梯装置应用最广。3.4.4.2 偶极装置偶极装置的激电异常幅度较大,对覆盖层的穿透能力较强。在采用多个偶极间隔系数工作时,兼有剖面法和测深法双重性质,对极化体形状和产状的分辨能力较强。此外,在各种电极装置中,这种装置电磁耦合。