数学期望如何计算,期望的计算法则? 对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,他的分布列求数学期望和方差)有EX=npDX=np(1-p)n为试验次数p为成功的概率对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/PDX=p^2/q还有任何分布列都通用的DX=E(X)^2-(EX)^2
数学期望的计算 E(X-3)^3=E(X^3-3x^2+9X-27)=E(X^3)-3E(X^2)+9E(X)-27=∫x^3 f(x)dx-3∫x^2 f(x)dx+9∫xf(x)dx-27
根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到DX=E(X^2-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2
数学期望值的公式 最低0.27元开通文库会员,查看完整内容>;原发布者:宁策127离散型如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值 与对应的概率 乘积之和称为该离散型随机变量的数学期望[2](若该求和绝对收敛),记为。它是简单算术平均的一种推广,类似加权平均。公式离散型随机变量X的取值,为X对应取值的概率,可理解为数据 出现的频率,则:定理设Y是随机变量X的函数:(是连续函数)它的分布律为 若 绝对收敛,7a64e78988e69d8331333433623736则有:连续型设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值 为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望 完全由随机变量X的概率分布所确定。若X服从某一分布,也称 是这一分布的数学期望。定理若随机变量Y符合函数,且 绝对收敛,则有:该定理的意义在于:我们求 时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。上述定理还可以推广到两个或以上。
数学期望计算 你错在:把 e(y^2)=e(y)e(y).这是不对的题中应该还有其他条件你没给,针对不同题算出e(y^2)答案就有了
数学期望E(XY)怎么计算 如果X、Y独立,则:E(XY)=E(X)*E(Y)如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义.或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)
怎样计算数学期望?计算数学期望的窍门在哪里?数学期望有几种公式:如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p?
协方差怎么计算,请举例说明 cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X。
数学期望EX与E|X|的区别. 因为Ex=xf(x)在负无穷到0上的积分为负(x0),在0到正无穷上为正(x>;0,f(x)>;0)在负无穷和正无穷的积分值的绝对值相同,符号相反,所以积分后的和即在负无穷到正无穷上的积分E(X)为0,而E|x|=|x|f(x)在负无穷到正无穷上的.