ZKX's LAB

累积分布函数数学期望 概率论与数理统计,概率统计,设随机变量x的概率密度函数为f(x)=ae……试求出:常数a,x的分布

2020-10-11知识21

Γ函数(伽马函数)的数学期望怎么求? E(X)=∫[c,+∞)x*β^α/Γ(α)*(x-c)^(α-1)*e^[-β(x-c)]*dx(α>;0,β>;0)=∫[0,+∞)(t/β+c)*β^α/Γ(α)*(t/β)^(α-1)*e^(-t)*1/β*dt=1/Γ(α)*∫[0,+∞){t^[(α+1)-1]/β+ct^(α-1)}e^(-t)dt=1/Γ(α)*[1/β*.

累积分布函数数学期望 概率论与数理统计,概率统计,设随机变量x的概率密度函数为f(x)=ae……试求出:常数a,x的分布

已知概率密度函数怎么求它的数学期望和方差

累积分布函数数学期望 概率论与数理统计,概率统计,设随机变量x的概率密度函数为f(x)=ae……试求出:常数a,x的分布

已知概率密度函数怎么求它的数学期望和方差 代入公式。在[a,b]上的2113均匀分布,5261期望=(a+b)/2,方差=[(b-a)^2]/2。代入直接得到结论。如4102果不知道均匀分1653布的期望和方差公式,只能按步就班的做:期望:EX=∫{从-a积到a} xf(x)dx{从-a积到a} x/2a dxx^2/4a|{上a,下-a}0E(X^2)=∫{从-a积到a}(x^2)*f(x)dx{从-a积到a} x^2/2a dxx^3/6a|{上a,下-a}(a^2)/3方差:DX=E(X^2)-(EX)^2=(a^2)/3扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,。

累积分布函数数学期望 概率论与数理统计,概率统计,设随机变量x的概率密度函数为f(x)=ae……试求出:常数a,x的分布

已知概率密度函数,它的期望和方差是怎么得来的?谢谢 已知概率2113密度函数,它的期望:已知概5261率密度函数,4102它的方差:1653扩展资料:连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

标准正态分布密度函数公式 标准正态分布密度函数2113公式:正态曲线呈5261钟型,两头低4102,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。图形特征:集中性:正1653态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。扩展资料:由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。若 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到。

随机阅读

qrcode
访问手机版