计算∫(x^2-2y)dx+(x+y^2)dy其中L为三顶点分别为(0,0)(3,0)(3,4)的三角形正向边界 由格林公式,?Q/?x=1,?y/?y=-2(x^2-2y)dx+(x+y^2)dy(1+2)dxdy3∫1 dxdy 被积函数为1,积分结果是区域面积,这个三角形面积为618
已知三角形三个顶点在空间中的坐标,怎样求这个三角形的质心? 质心,就是重心.如果三角形三个顶点座标分别为(x1,y1)、(x2,y2)、(x3,y3),则重心的座标是【(x1+x2+x3)/3,(y1+y2+y3)/3】.证明过程较为复杂,主要是演算过程太多了,很长很长的.请看附图.但你目前的积分只有15分,怎么办啊?
L为三顶点(0,0)(3,0)和(3,2)的三角形区域的正向边界 求曲线积分∫L(2x-y+4x)dx+(5y+3x-6)dy 根据格林公式⑴∮P(x,y)dx+Q(x,y)dy=∫D(dQ/dx-dP/dy)dxdy 有L(2x-y+4x)dx+(5y+3x-6)dy=∫D(3-1)dxdy=2∫Ddxdy=2*S△=2*1/2*3*2=6
L为三顶点(0,0)(3,0)和(3,2)的三角形区域的正向边界 求曲线积分∫L(2x-y+4x)dx+(5y+3x-6)dy
L是以(0,0),(1,0),(0,1)为顶点的三角形区域的正向边界,则∫xydx+ x∧2dy= 从(0,0)到(1,0),y=0,dy=0,所以线积分为0。从(0,1)到(0,0),则来是x=0,dx=0,所以线积分也是0。从而整个源回路积百分就等于从(1,0)到(0,1)这段直线段上的积分。设度y=t,x=1-t,t∈[0,1],则dy=dt,dx=-dt。原式=∫[0,1][t(1-t)](-dt)+(1-t)2dt[0,1](t2-t+t2-2t+1)dt[0,1](2t2-3t+1)dt2/3*t3-3/2*t2+t[0,1]1/6
设L为三顶点分别为(0,0)(3,0)(3,2)的三角形区域的正向边界,则对坐标的曲线积分 0