ZKX's LAB

多项式插值为什么会存在龙格现象,如果存在龙格现象如何解决? 出现的原因拉格朗日龙格现象

2020-10-11知识40

观察拉格朗日插值的龙格现象 内容:对于函数F(x)=5/(a^2+x^2)进行拉格朗日插值,取不同的结点数n,在区间〔-5,5〕取等间距n个结点为插值结点。把f(x)和插值多项式的。

多项式插值为什么会存在龙格现象,如果存在龙格现象如何解决? 出现的原因拉格朗日龙格现象

请教关于拉格朗日插值问题 matlab 拉格朗日函数源文件如下:function f=Language(x,y,x0)求已知数据点的拉格朗日插值多项式已知数据点的x坐标向量:x已知数据点的y坐标向量:y插值的x坐标:x0求得的拉格朗日插值多项式在x0处的插值:fx0处的插值:f0syms t;if(length(x)=length(y))n=length(x);elsedisp('x和y的维数不相等!');return;end%检错f=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));计算拉格朗日基函数end;f=f+l;计算拉格朗日插值函数simplify(f);化简if(i=n)if(nargin=3)f=subs(f,'t',x0);计算插值点的函数值elsef=collect(f);将插值多项式展开f=vpa(f,6);将插值多项式的系数化成6位精度的小数endendend将上述文存为M文件,就在命令窗口调用就行了在命令窗口输入x1=-1:0.05:1;y1=1./(1+x1.^2);x2=-1:2/5:1;y2=1./(1+x2.^2);f2=Language(x2,y2);x3=-1:2/10:1;y3=1./(1+x3.^2);f3=Language(x3,y3);x4=-1:2/20:1;y4=1./(1+x4.^2);f4=Language(x4,y4);plot(x1,y1,x2,y2,'b',x3,y3,'r',x4,y4,'g')legend('y1-原图','y2-5次插值','y3-10次插值','y4-20次插值')xlabel('x');ylabel('y')

多项式插值为什么会存在龙格现象,如果存在龙格现象如何解决? 出现的原因拉格朗日龙格现象

观察拉格朗日插值的龙格现象内容:对于函数F(x)=5/(a^2+x^2)进行拉格朗日插值,取不同的结点数n,在区间〔-5,5〕取等间距n个结点为插值结点 .把f(x)和插值多项式的曲线画在同一张图上进行比较 你用的什么软件?如果是matlab,我发消息给你.如果不是,回我看,你要用什么东西来做,我看看你能不能帮你.

多项式插值为什么会存在龙格现象,如果存在龙格现象如何解决? 出现的原因拉格朗日龙格现象

多项式插值为什么会存在龙格现象,如果存在龙格现象如何解决? 一般来说,节点个数越多,插值函数和被插值函数就有越多的地方相等。但是随着插值节点个数的增加,两个插值节点之间插值函数并不一定能够很好地逼近被插值函数。再次,从舍入误差看,高次插值由于计算量大,可能会产生更严重的误差积累,所以,稳定性得不到保证。这就是Runge现象。解决Runge现象的方法是采用分段低次多项式插值:有分段线性插值和分段三次Hermite插值。在每个小区间采用低次插值,则可避免Runge现象。

插值多项式的次数越高是否越逼近被插值函数,龙格现象是什么?是否一定会发生? 次数高了后,振荡特别厉害,不是一定会发生,看插值点的选取的。

如何利用matlab解决插值拟合中的龙格现象,插值法是一个古老而实用的方法,它是一种逼近函数的构造方法。我们在学习数值分析的过程中会学到很多插值方法,如拉格朗日插值法。

Matlab中龙格现象实例,在数值分析这么课程中,我们会学到各种各样的差值方法,比如说拉格朗日差值、牛顿差值。在学习的过程中,前人已经发现,并不是差值次数越高越好,。

内容:对于函数F(x)=5/(a^2+x^2)进行拉格朗日插值,取不同的结点数n,在区间〔-5,5〕取等间距n个结点为插值结点 .把f(x)和插值多项式的曲线画在同一张图上进行比较 你用的什么软件?如果是matlab,我发消息给你.如果不是,回我看,你要用什么东西来做,我看看你能不能帮你.

#matlab函数#龙格现象

随机阅读

qrcode
访问手机版