高维聚类分析的详细内容 目前,聚类分析的研究集中在聚类方法的可伸缩性、对复杂形状和类型的数据进行聚类的有效性、高维聚类分析技术以及混合数据的聚类方法研究,其中,高维数据聚类是聚类分析的难题,也是涉及到聚类算法是否适用于很多领域的关键。而传统聚类算法对高维数据空间进行聚类时会遇到困难,为了解决这个问题,R.Agrawal首次提出了子空间聚类的概念,以解决高维数据的聚类问题。高维数据聚类已成为数据挖掘中的一个重要研究方向。因为随着技术的进步使得数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,如各种类型的贸易交易数据、Web 文档、基因表达数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。但是,受“维度效应”的影响,许多在低维数据空间表现良好的聚类方法运用在高维空间上往往无法获得好的聚类效果。
聚类和降维有什么区别与联系? 当样本数据属性维数过多的时候,如果直接使用所有的参数可能会引入一些数据噪声。属性太多会可能会让聚类的粒度太小影响结果,就可以先借助PCA进行线性降维,可以降低参数的维数,还可以利用主成分分析结果,结合聚类分析的结果绘制分类交汇图,也可以用降维后的属性做聚类。
高维聚类分析的介绍 将物理或抽象对象的集合分组称为由类似的对象组成的多个类的过程被称为聚类。高维聚类分析与传统聚类分析的最主要差别就是高维度。高维数据聚类是聚类技术的难点和重点。
常用的聚类方法有哪几种?? 聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚7a686964616fe4b893e5b19e31333431343662类,K。2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。扩展资料:在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现。
请给些关于聚类的材料