ZKX's LAB

正态分布的数学期望是多少? 正态分布数学期望等于

2020-10-11知识49

正态分布的期望值和方差是什么? 在概2113率论和统计学中,数学期望5261(mean)(或均值,亦简称期望)为试验中每次可能结4102果的概率乘以其1653结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。扩展资料当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。参考资料来源:-方差参考资料来源:-数学期望

正态分布的数学期望是多少? 正态分布数学期望等于

求正态分布的数学期望 楼主的题目还是有问题,此题应该加上 X,Y相互独立的条件.你可以先求出Z的密度再来求期望,但会比较麻烦.相信楼主手里的教材上一定有这样一道题目的在本题相同的条件下求W=max(X,Y)的期望,答案为:1/根号下\\Pi;在此基础上可以有一个简单做法解楼主的问题:由X,Y相互独立且均服从标准正态分布,可以推出:X,—Y相互独立且也是均服从标准正态分布,而min(X,Y)=—max(—X,—Y),所以Emin(X,Y)=—Emax(—X,—Y)=—1/根号下\\Pi.

正态分布的数学期望是多少? 正态分布数学期望等于

正态分布的数学期望是多少? 就是 u据定义一算即可

正态分布的数学期望是多少? 正态分布数学期望等于

正态分布的数学期望 E(x^4)x^4*1/√(2π)e^(-x^2/2)dx 积分区间(-∞,+∞)2∫x^4*1/√(2π)e^(-x^2/2)dx 积分区间(0,+∞)分步积分.2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2/√(2π)∫3*e^(-x^2/2)dx积分区间(0,+∞)1/√(2π)∫e^(-x^2/2)dx=1/22/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)利用罗必塔法则,lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0所以E(x^4)=3

数学正态分布和均匀分布问题。 正态分布N(μ,σ^2)期望即μ,方差即σ^2区间[a,b]上均匀分布 期望为(a+b)/2,方差为(b-a)^2/12

正态分布,标准正态分布他们的数学期望和数学方差是什么 0—1分布,数学期望p 方差p(1-p);二项分布(贝努里概型),数学期望np 方差np(1-p);泊松分布,数学期望λ 方差λ;均匀分布,数学期望(a+b)/2 方差[(b-a)^2]/12;指数分布。

#数学期望#总体方差#概率论#统计学分布#正态分布

随机阅读

qrcode
访问手机版