指数分布的期望和方差 期望2113值:方差:指数分布可以5261用来表示独立随机事件发生的时4102间间隔,比如旅客进机场1653的时间间隔,在排队论中,一个顾客接受服务的时间长短(等待时间等)也可以用指数分布来近似。因为参数λ表示的是每单位时间内发生某事件的次数,即时间的发生强度,所以其倒数 1/λ(实际上是指数分布期望)可以表示为事件发生之间的间隔,即等待时间。如果平均每个小时接到2次电话(λ=2),那么预期等待每一次电话的时间是0.5个小时。扩展资料(1)随机变量X的取值范围是从0到正无穷;(2)密度函数极大值在x=0处,即f(x)=λ;(3)密度函数曲线随着x的增大,迅速递减;λ越大,密度函数曲线在零点附近越高,下降越急速;(4)λ越大,分布函数曲线在零点附近越高,上升越急速,更早达到天花板(即p=1);熟记,指数分布的期望值和方差为μ=1/λ,σ2=1/λ2。参考资料来源:-指数分布
用一次分部积分法就出来了。波士顿大学 精算理学硕士在读 用一次分部积分法就出来了。分部积分 发现 等你来答 ? 加入知乎 概率论 指数分布的数学期望怎么计算?。
指数分布的数学期望是什么?需要数学表达式,不需要解释,只要表达式就行. 是1/λ,我查过书了,没错的
关于指数分布的数学期望
数学里面期望值是什么?怎么算? 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。期望值计算:例子某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个。则此城市中任一个家庭中孩子的数目是一个随机变量,记为X。它可取值0,1,2,3。其中,X取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03。则,它的数学期望扩展资料:期望值学术解释:1.期望值是指人们对所实现的目标主观上的一种估计;2.期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小;3.期望值是指对某种激励效能的预测;4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望。期望的来源:在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行。