函数极大值、极小值和最大值、最小值的区别 最大最小值是在全局上考虑的,如果有最大值,只有一个,如果有最小值,也只有一个.极大极小值是在局部考虑的,如果f(x)在点a连续,如果左边递增,右边递减,则称f(a)为极大值,反之称为极小值.因此一个函数可能有数个极大值,也可能有数个极小值.一个函数的最大值可能是极大值,也可能不是,同样,一个函数的最小值可能是极小值,也可能不是.
任何一个连续函数,极值点个数大于2,其极大值点和极小值点必然是间隔出现的吗? 这个命题是否为真?如果为真,求如何证明?1,270 关注问题 ? 邀请回答 ? 3 条评论 ? ? 5 匿名用户 6 人赞同了该回答 如果常函数的情况符合条件,。
极小值和最小值以及极大值和最小大值区别?? 极大/极小值是一个局部的性质,它要求在这一点的导函数为零且左右两边局部区间内的导函数符号相反。你可以笼统地理解为“极大/小值点在局部的小区间上光滑地隆起/凹陷”。而最大/小值讲的是一个区间整体的性质,是指整个这一区间中最大/小的值。如果最大/小值点存在的话,它将在极值点、不可导点(可以理解为不光滑的点)以及区间端点中产生。举个简单的例子,函数y=2*(x立方)+3*(x平方),这个函数在x=-1的时候取到极大值,但这点不是最大值点;在x=0的时候取到极小值,但这点也不是最小值点。在整个定义域(-∞,+∞),它没有最大值也没有最小值,但极值存在。但是,如果在区间[-1.1,0.1]上,这两个极值点就分别成为最大/小值点了。由此可见,极值是一个局部的性质,是不依赖于规定的区间的。而最值是一个区间内的整体的性质,所规定的区间不同,最值也会发生变化。虽然很失礼,但我不得不指出,1至4楼的回答是错误的。本人就事论事,请以上的朋友不要见怪…:)对于高中数学来说,这是远远超纲的,等您接触了高等数学就能更深入的了解了:)为了便于理解,以上的说明有的地方用的语言不是很严密,请谅解:)
两个极大值之间必有极小值,如果是Y=X的绝对值呢? 极大值和最大值在高数上是有差别的,极大值是在函数的某一个区间内说的,最大值是函数在它的定义域内说的,只有连续函数之间才可以说“两个极大值之间必有极小值”
极小值和最小值以及极大值和最小大值区别?? 极大/极小值是一个局部的性质,它要求在这一点的导函数为零且左右两边局部区间内的导函数符号相反。你可以笼统地理解为“极大/小值点在局部的小区间上光滑地隆起/凹陷”。。