聚类与分类有什么区别 简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。简单地说,聚类是指事先没有“标签”而通过某种成团分析。
文本聚类算法有什么特点? 这个严格规定是有用的,因为不用担心不同选择的组合数目,它将产生较小的计算开销
文本聚类的应用 ①文档聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤,比较典型的例子是哥伦比亚大学开发的多文档文摘系统Newsblaster。Newsblaster将每天发生的重要新闻文本进行聚类处理,并对同主题文档进行冗余消除、信息融合、文本生成等处理,从而生成一篇简明扼要的摘要文档;②对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。Hua-Jun Zeng等人提出了对搜索引擎返回的结果进行聚类的学习算法。比较典型的系统则有vivisimo和infonetware等。系统允许用户输入检索关键词,而后对检索到的文档进行聚类处理,并输出各个不同类别的简要描述,从而可以缩小检索的范围,用户只需关注比较有希望的主题。另外这种方法也可以为用户二次检索提供线索;③对用户感兴趣的文档(如用户浏览器cache中的网页)聚类,从而发现用户的兴趣模式并用于信息过滤和信息主动推荐等服务。④聚类技术还可以用来改善文本分类的结果,如俄亥俄州立大学的Y.C.Fang,S.Parthasarathy和F.Schwartz等人的工作。⑤数字图书馆服务。通过SOM神经网络等方法,可以将高维空间的文档拓扑保序地映射到二维空间,使得聚类结果可视化和便于理解,如SOMlib[]系统;⑥文档集合的自动整理。如。
LDA进行文本分类时通过聚类来对文本分类效果如何?
文本分类和聚类有什么区别 聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技术。分类和聚类都是将相似对象归类的过程。区别是,分类是事先定义好类别,。