ZKX's LAB

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 已知随机过程xt的协方差函数

2020-10-10知识15

相关函数的协方差的性质 协方差的5261性质:1、Cov(X,4102Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方1653差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差函数定义为:若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:扩展资料协方差反映了两个变量之间的相关程度:协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。在第二个点,x与y变化一致且变化幅度都很大,因此其乘积必然较大,在第三个点,x。

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 已知随机过程xt的协方差函数

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个。

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 已知随机过程xt的协方差函数

设Y(t)=Xt+a,t∈T,其中X为随机变量,a为常数,且E(X)=u,D(X)=σ2,试求随机过程{Y(t),t∈T}的均值函数与自协方差 mY(t)=EY(t)=E(Xt+a)=tEX+a=tu+a ;nbsp;RY(t1,t2)=EY(t1)Y(t2)=E(Xt1+a)(Xt2+a)=t1t2EX2+at1EX+at2EX+a2=t1t2(σ2+u2)+a(t1+t2)u+a2 ;nbsp;CY(t1,t2)=RY(t1,t2)-mY。

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 已知随机过程xt的协方差函数

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的。

一平稳随机过程X(t),自相关函数为R(T),a为常数,试以X(t)的自相关函数表示随机过程Y(t)=X(t+a)-X(t)的自相关函数 应该是这个答案:2R(T+a)-R(T)-R(T+2a)

设随机过程X(t)的均值为mx(t),自协方差函数为Bx(s,t)=E(X(s)-mx(t))(X(t)-mx(t)),Y(t) 均值函数主要用于预测系列随机程我举例用X(t)表示第t平均气温我预测呢候要用均值函数算EX(t)算t气温期望预测自相关函数主要用于物理表示t刻事件发与s刻事件发相关性我由定义E(X(s)X(t))=Cov(X(s)X(t))+EX(s)EX(t),独立同布随机程若EX(t)=0,则自相关函数二者协差

已知随机向量(X,Y)的协方差矩阵V为(4 3 3 5)求随机向量(X+3Y,2X-Y)的协方差矩阵和相关系数矩阵 D(X)=4,D(Y)=5,COV(X,Y)=3D(X+3Y)=4+9×5+6×3=67,D(2X-Y)=16-12+5=9COV【(X+3Y),(2X-Y)】=8+15-15=8随机向量(X+3Y,2X-Y)的协方差矩阵(67,8,8,9)相关系数矩阵(1,8/3根号(67),8/3根号(67),1)

如何计算正态随机过程平方的协方差函数 机过程的定义:如果对于任意和以及有:则称为严平稳随机过程,或称狭义平稳随机过程。二。平稳随机过程的数字特征:1),平稳随机过程的数学期望与时间无关2),平稳随机过程的方差与时间无关3)其中:4)平稳随机过程的数学期望及方差与无关,它的自相关函数和协方差函数只与时间间隔有关;随机过程的这种“平稳”数字特征,有时就直接用来判断随机过程是否平稳。即若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与有关,即我们就称这个随机过程是广义平稳的。三。宽平稳随机过程(广义平稳):若的数学期望为常数,且自相关函数只与有关,则称为宽平稳随机过程,或称广义平稳随机过程。不难看出,严平稳过程一定是宽平稳过程,反之,不一定。但对于正态随机过程两者是等价的。后面,若不加特别说明,平稳过程均指宽平稳过程。四。联合宽平稳随机过程:若,是宽平稳过程,且其中:。则称和为联合宽平稳随机过程。

随机阅读

qrcode
访问手机版