急求!!方差等于一代表什么?数学期望等于零代表什么? 方差等于1,那么标准差也就是1,表示概率函数在对称轴左右偏差1的位置导数为零,即为拐点;期望为0,表示概率函数以Y轴为对称轴对称。
数学期望和方差的几条公式 E(2x)等于2ExE(X)+E(Y)=E(X+Y)DX=E(X^2)-(EX)^2
数学期望的性质有哪些? 数学期2113望的性质:1、设X是随机变5261量,C是常数,则E(CX)4102=CE(X)。16532、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。4、设C为常数,则E(C)=C。扩展资料:期望的应用1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。3、在古典力学中,物体重心的算法与期望值的算法近似,期望值也可以通过方差计算公式来计算方差:4、实际生活中,赌博是数学期望值的一种常见应用。参考资料来源:-数学期望
数学期望和方差的关系? 方差2113=E(x2)-E(x)2,E(X)是数学期望5261。在概率论和统计学中,数学期望(mean)(或均值,亦简称期4102望)是试验中每1653次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。扩展资料:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种。
数学期望与方差的关系 最低0.27元开通文库会员,查看完整内容>;原发布者:安然无恙203714第3章随机变量的数字特征学习目的与要求:本章主要讨论随机变量的数字特征,概率分布全面地描述随机变量取值的统计规律性,而数字特征则描述这种统计规律性的某些重要特征。本章总的要求是:理解期望与方差的概念,掌握期望与方差的性质与计算,会计算随机变量函数的期望;掌握两点分布、二项分布、泊松分布、均匀分布、指数分布和正态分布的期望与方差;了解协方差、相关系数的概念和性质,会求相关系数,知道矩与协方差阵的概念及求法。重点内容是:期望、方差、协方差的计算,随机变量函数的数字期望;难点内容是:随机变量函数的数学期望。3.1数学期望与方差3.2协方差、相关系数、协方差矩阵3.3条件数学期望与回归3.4特征函数及其性质3.1数学期望与方差1.随机变量的期望1)离散型随机变量的期望设离散型随机变量的分布律为,则的数学期望(简称均值或期望)为。2)连续型随机变量的期望设连续型随机变量的概率密度为,则随机变量的数学期望(或称期望或均值),记为,即。连续型随机变量函数的数学期望设为连续型随机变量,其概率密度为,又随机变量,则。3)二维随机变量函数的期望若为离散型随机变量,若。
什么是随机过程的数学期望和方差?它们分别描述了随机过程的什么性质? 随机过程中,如果固定时间t,可以把方程看成一个概率方程,那么此时,就有了期望和方差.
根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到DX=E(X^2-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2
概率论 关于方差和数学期望的基本性质的一个问题 我觉得楼主概念有错误,两个随机变量之和的方差公式是D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)}是没错的,或者确切地说,是D(X+Y)=D(X)+D(Y)+2{E(XY)-E(X)E(Y)},大括号就是随机变量(不一定是常数)的协方差cov(X,Y)。而且,楼主说当两个随机变量相互独立时,D(X+Y)=D(X)+D(Y)也是完全正确的。但是,接下来逻辑就有错误了,两个随机变量独立时的公式D(X+Y)=D(X)+D(Y)是由原始公式D(X+Y)=D(X)+D(Y)+2E{E(XY)-E(X)E(Y)}得来的,但是一定是因为“把X和Y看成常数来对待”得到的吗?这是关键。实际上,当两个随机变量X和Y独立时,就有公式E(XY)=E(X)E(Y),从而有“当随机变量X和Y独立时,D(X+Y)=D(X)+D(Y)”这样一个结论。不知解答是否令楼主满意?
数学期望与方差的关系 DX=EX^2-(EX)^2也就是方差等于随机变量平方的期望减去其期望的平方
期望和方差的定义及性质