鏁板鏈熸湜E(X)鍜屽潎鍊兼湁浠€涔堣仈绯诲拰鍖哄埆? 例子最能说明问题特别注意例1均值只是简单的加和平均期望涉及概率(概率可以理解为一种期望,只是在这种情况下,利于你理解而已)还有个很简单的注意点离散的才有均值连续的有数学期望可是没有均值鏁板鏈熸湜E(2XEX)绛変簬澶氬皯,涓轰粈涔?鏍规嵁鏄粈涔?, E[2XE(X)]=E[2X]*E[E(X)]=2E(X)*E(X)=2E(X)*E(X)E(X虏)绛変簬浠€涔堬紵 鏈夊叧鏁板鏈熸湜 记D(x)为该数2113据的方差,E(x)为期望,则D(x)=E(x^52612)-[E(x)]^2,这样就可以把E(X2)求出来,或者直接4102用定义法求也可以。数学期望是试验1653中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。扩展资料离散型随机变量数学期望的内涵:在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。参考资料来源:—数学期望鏁板鏈熸湜 E(c)c是常数。是等于c本身鏁板鏈熸湜涓璄璇讳粈涔堬紵 自然对数e最早起源于复利,假如你有一块钱,放银行,银行给你100%的利率也就是说存一年后变成两块钱。那么现在问题来了,假如我半年取一次,取完再放入银行存半年,那么我就可以得到(1+0.5)2也就是2.25,比两块钱还多,假如我分1/4年存取一次呢,那么就是(1+0.25)的四次方,约为2.44,又更多了。假如我无限分割下去,我能得到无限的本息吗?答案是不能,(1+1/∞)的无穷次方等于e,约为2.71828,这就是自然对数。鏁板鏈熸湜涓璄(XY)琛ㄧず浠€涔堟剰鎬濆憿锛屾眰瑙g瓟", 数学期望中E(XY)表示xy相乘的数学期望。首先x,y都是随便变量,E(x)表示x的“平均”,即数学期望,而现在相当于把xy看成一个数(x,y各自随机取值),然后求(不妨设z=xy。鏁板鏈熸湜涓璄璇讳粈涔?, 数学期望中E读字母E鏁板鏈熸湜锛孍(X)鍜孍(X^2)鏈変粈涔堝尯鍒紝浠€涔堟剰鎬濓紝", E(X)是X的期望值,如果X等概率地取0,1,2,3,4,那么E(X)=(0+1+2+3+4)/5=2 E(X^2)是x^2的期望值,如果X等概率地取0,1,2,3,4,那么E(X^2)=(0^2+1^2+2^2+3^2+4^2)/5。鏁板涓殑鏈熸湜涓轰粈涔堢敤E琛ㄧず expectation~期望涓轰粈涔堝父鏁扮殑鏁板鏈熸湜浠嶆槸甯告暟? 期望可以看做是平均数,一个常数的平均数当然是它本身.
随机阅读
- 萤石粉资源税 萤石生产工艺和生产成本?
- 压缩机排气压力较高是什么原因? 离心式压缩机排气压力高的后果
- 张骞 汉中人也 建元翻译 一道文言文问题
- 改革开放是哪次会议上做出的重大决策 中国共产党在哪次会议上作出了实行改革开放的伟大决策
- 权以示群下,莫不响镇失色的翻译 欲言夏口我沾衣
- 小八路大英雄微电影 <英雄小八路>的观后感
- 益阳喜糖铺子 十字路喜铺
- 四氢化碳的化合价 二氧化碳的化合价是什么
- 国有银行发行债券 银行发行的债券属于金融债券还是企业债券??
- 在乌鲁木齐市区看雪山最好 世界上有哪些能在市区肉眼看到雪山的城市?
- 蓟县毛家峪水世界 天津周边哪个城市适合自驾游?
- 郑州建行龙卡汽车卡洗车点 南阳五中冉鑫
- 中诚信托怎么样 中诚信托业务部门怎么样
- 佛山三水,有那些民办学校(小学)?有贵族学校吗? 西南沙头永兴路16号
- 段园镇牛眠村小冯庄 淮北市段圆镇牛眠村小冯庄在塌陷区为什么不搬迁房子都是裂缝难道政府不知道吗为什么不为老百姓办点实事
- 肇庆市朱氏大宗祠 李氏祠堂门口对联
- 城南旧事中宋妈为什么被丈夫接? 城南旧事中的小栓子几岁
- 百子湾沿海赛洛城房价是多少 沿海赛洛城 房价
- 长沙著名别墅有哪些啊? 长沙麓谷恋迪亚溪谷
- 正常分娩出血量一般不超过多少? 正常分娩中出血量最多不超过