ZKX's LAB

车削薄壁零件的刀具负偏角 数控;车床加工薄壁件的方法

2020-07-20知识6

加工细长的轴类零件为了减少径向力,车刀的主偏角应为多少 一般把长径比(轴2113的长度与直长之5261比)大于20的轴类工件,称为细长轴。车细4102长轴时1653,应考虑以下几个问题:1)细长轴刚性差,车削过程中,在切削力、本身重量和离心力的作用下,极易产生弯曲和振动,加工起来很困难,长径比越大,加工越困难。因此,为提高刚性,加工细长轴一般采用中心架或跟刀架。2)因为细长轴各部分质量对转动中心分布不均匀,加工时转速愈高,离心力愈大,工件愈易引起振动,致使表面质量下降,甚至造成无法加工。因此,加工细长轴一般采用较低的切削速度。3)车削细长轴一次进给的时间较长,车削热量大部分传给工件,使工件温度升高,产生轴向伸长变形,温度愈高,伸长愈大。若工件两端用顶尖装夹(或一端用卡盘一端用顶尖),轴向伸长会使工件弯曲,也使加工质量下降。因此,对要求较高的细长轴类工件,要考虑伸长量的补偿问题。4)在选择车刀几何参数时,要考虑以下问题:①尽量减小切削力,尤其是减小径向切削力,因为径向力是产生切削振动的主要原因。为此,细长轴车刀一般选用大前角和大主偏角。为减小径向力、避免振动,有的细长轴车刀甚至选用93°主偏角。②选择正刃倾角(λs>0)。一方面可控制切屑流向待加工表面,另一。盘形薄壁零件的车削 在生产实际中盘形薄壁零件应用较广,如图1所示。由于工件较薄,刚性较差,采用常规的切削加工方法,受轴向切削力和热变形的影响,工件会出现弯曲变形,很难达到技术要求,。刀具磨损分为哪三个阶段? 石墨专用刀具的特点是什么石墨电极与铜电极相比具有电极消耗小、加工速度快、机械加工性能好、加工精度高、热变形小、重量轻、表面处理容易、耐高温、加工温度高、电极可。数控;车床加工薄壁件的方法 薄壁套类零件的加工关键是工艺方法,而切削用量仅仅是工艺中的一小部分。工艺方面有以下几点:1、减少切削力造成的变形,可采用大偏角、内、外表面同时切削(使径向力相互抵消)等方法。2、分粗、精两次加工,减少热变形引起的误差,可在粗加工后留有足够的冷却时间,再进行精加工。3、切削用量还必须根据零件的材料、尺寸和精度的要求;但根据薄壁的特点,可以高传速、低进给、小吃刀量。简述刀具前角,后角,主偏角和刃倾角对切削过程的影响是什么? 1.前角γ0在主剖面中测量,是前刀面与基面之间的夹角。其作用是使刀刃锋利,便于切削。但前角不能太大,否则会削弱刀刃的强度,容易磨损甚至崩坏。加工塑性材料时,前角可选大些,如用硬质合金车刀切削钢件可取γ0=10~20,加工脆性材料,车刀的前角γ0应比粗加工大,以利于刀刃锋利,工件的粗糙度小。2.后角α0在主剖面中测量,是主后面与切削平面之间的夹角。其作用是减小车削时主后面与工件的摩擦,一般取α0=6~12°,粗车时取小值,精车时取大值。3.主偏角Kr在基面中测量,它是主切削刃在基面的投影与进给方向的夹角。其作用是:1)可改变主切削刃参加切削的长度,影响刀具寿命。2)影响径向切削力的大小。小的主偏角可增加主切削刃参加切削的长度,因而散热较好,对延长刀具使用寿命有利。但在加工细长轴时,工件刚度不足,小的主偏角会使刀具作用在工件上的径向力增大,易产生弯曲和振动,因此,主偏角应选大些。车刀常用的主偏角有45°、60°、75°、90°等几种,其中45°多。4.副偏角Kr’在基面中测量,是副切削刃在基面上的投影与进给反方向的夹角。其主要作用是减小副切削刃与已加工表面之间的摩擦,以改善已加工表面的精糙度。在切削深度ap、进给量f、主偏角Kr。

#振动频率#刀具半径补偿#切削速度#刀具角度#切削用量

qrcode
访问手机版