高密度电法基本勘探原理 2-D高密度电法勘探通常采用很多根电极(25根或更多)连接到一条多芯电缆上(Griffiths et al.,1993),通过一台微型计算机与一台电极转换开关装置连接,每次自动选择相关的4根电极进行数据观测(图3.1)。目前,2-D电阻率法勘探技术和设备得到相当快的发展,必要的数据采集设备可以从一些国际商业公司购买到,部分典型系统的价位一般在6万~7万美元。图3.1为由一条多芯电缆连接数根电极沿一条直测线进行2-D探测的典型排列示意图,通常,两相邻电极采用相同的电极距,多芯电缆连接一个电极转换开关和一台便携式计算机,采用的观测序列、使用的装置类型和其他采集参数(如使用的电流)输入到一个计算机程序可读取的文本文件中,不同的仪器采用不同的控制文件格式,需要参考相对应的系统操作手册。读取控制文件后,计算机程序自动选择适合每次观测的电极。某些仪器系统内置了微处理系统,此时,便携式计算机就不需要了,在地形比较恶劣的条件下,这对开展勘探工作是非常有利的。野外实地勘探时,大部分工作是电缆敷设和插电极,随后,计算机自动采集数据,大部分勘探时间花费在等待仪器采集数据上。为了获得一张较理想的2-D剖面,探测的覆盖面必须是2-D,例如:如图3.1。
在res2dinv软件中,如何加入温施装置的地形数据啊? 问题解决了,多谢版主出处地学土地网:http://bbs.dixue.com/forum.php? 。 page%3D1&page=1说明书有格式说明的加在数据后面,要是没有显示的话应该是格式不对!我就是按照。
直流激发极化法的原理 在充电和放电过程中,由于电化学作用引起的这种随时间缓慢变化的附加电场现象,称为激发极化效应(IP效应),激发极化法是以不同岩矿石的激电效应之差异为物质基础,通过观测和研究大地激电效应,以探查地下地质情况的一种勘探方法。关于岩石激发极化的成因,存在较多争论,大多数人认为,岩石的激发极化效应与岩石颗粒和周围溶液界面上的双电层有关。基于岩石颗粒-溶液界面上双电层的分散结构和分散区内存在可以沿界面移动的阳离子这一特点,提出关于其产生机理的有代表性的两种假说:一是双电层形变假说,即在外电流作用下,岩石颗粒表面双电层分散区中的阳离子发生移动,形成双电层形变,当外电流断去后,堆积的离子放电,以恢复到平衡状态,从而观测到激发极化电场。双电层形变激发极化形成的速度和放电的快慢,决定于离子沿颗粒表面移动的速度和路径长度,因而较大的岩石颗粒将有较大的时间常数(即充电或放电快慢)。二是薄膜极化假说:简单地说,就是电流流过宽窄不同的空隙时,形成离子浓度变化,当外电流断掉以后,由于离子的扩散作用,离子浓度将逐渐消失,恢复到原来的状态,与此同时形成扩散电位,这便是离子导体上观测到的激发极化。进一步的研究表明,。
并行网络电法 传统的高密度电法仪器均为一次供电,测量电极测一次值,电极间的转换依靠电极转换器实现。尽管与常规电法相比,已大大提高了工百作效率,但现场采集数据仅得到视电阻率值,不能反映电场的时间变化特征,并且现场的施工强度大,工作时间较长。网络并行电法仪如图5-23所示,其最大优势在于任一电极供电,可在其余所有电极同时进行电位测量,清楚地反映探测区域的自然电位、一次供电场电位的变化情况,度采集数据效率比传统的高密度电法仪大大提高,是电法勘探技术的又一次飞跃,是国内首创的方法。图5-23 网络并行电法监测系统示意图例如:测线上布置64个电极,采用AM法采集,任一电极供电时,其余63个电极同时采集电位。这样其数据采集效率与串联采集相比,采集效率至少提高了63倍。不仅如此,通过AM法和ABM法装置自动顺次版切换电极,取得大量的电法数据,不仅可实现所有现行的直流高密度电法探测(如温纳二极、三极、四极等)数据反演,而且可进行高分辨的电阻率法反演。该系统权的另一个特点是实现数据的远程采集,通过仪器专用软件系统、数据Mo-dem以及电话线的连接,可实现电法数据的实时远程监测,实现数据的高效采集,大大减少现场的工作量。
“施组”是什么意思? 施组读音:shīzǔ释义:施工组织设计详细释义:施工组织是根据批准的建设计划、设计文件(施工图)和工程承包合同,对土建工程任务从开工到竣工交付使用,所进行的计划、组织、控制等活动的统称。
温纳装置与偶极装置有什么不同 温纳四级主要是工程测线的布置形式,可以观测一条测线的电测深和电剖面的综合结果。偶极装置,主要是一个测量结果。是一种测量形式。
物探技术中温纳装置与施伦贝尔装置具体定义是什么? 施伦贝尔1装置方式(SB1)该装置的测量方式是测深测量,测量时,M、N保持不动,A、B同时逐点分别向左、向右移动,得到一条滚动扫描测量线,然后A、M、N、B同时向右移动一个电极,再按照同样的方式跑极,得到另一条滚动扫描测量线。所得断面为矩形(跑极方式见图2)图2施伦贝尔1装置跑极方式设测线上共有m个电极,隔离系数为n,则对应于每一层位(n)的测量数据个数为:m?n×2?1;每层的数据量一样,数据总数为:S=n×(m?n×2?1)2.3温施1装置方式(WS1)此装置的测量方式是测深测量,它是温纳和施伦贝尔的结合,在整条剖面测量中MN要由小到大变化几次,但在MN为某一固定值时,A、B按施伦贝尔1的方式移动。当温施间隔选择一固定值a时,则M、N间的间距每隔a层增加两个电极距,即M、N间的间距按1、3、5、7…等间隔增加,A和M、N和B之间的电极距也按照隔离系数由小到大的顺序等间隔增加。所得断面为矩形(跑极方式见图3)图3温施1装置跑极方式设测线上共有m个电极,隔离系数为n,则对应于每一层位(n)的测量数据个数为:m?n×2?1;每层的数据量一样,数据总数也满足公式:S=n×(m?n×2?1)
资料处理与反演解释 高密度电阻率法的测量系统在施工现场采集到大量关于地电断面结构特征的地质信息,并以数字的形式保存在随机存储器中。将其传入微机进行数据转换、处理与解释,然后生成供推断解释用的各类图件。图1.4.6为高密度电阻率法资料处理与解释系统框图,实际工作中可根据具体情况的需要选用其中某些过程。图1.4.6 高密度电阻率法数据处理与解释流程框图1.4.3.1 滤波处理方法三电位电极系中,偶极和微分排列所测视电阻率曲线随着水平极距的加大,曲线由单峰变为双峰。绘成断面图时,除了和地质对象相对应的主异常外,一般还会出现强大的伴随异常。为消除或减弱三电位电极系视电阻率曲线中振荡成分的影响,简化异常形态,可以采用数字滤波方法,并将这种滤波称为扩展偏置滤波。扩展偏置滤波器有4个非零的权系数:0.12,0.38,0.38,0.12。在滤波计算中,无论间隔系数为几的剖面测量结果,都应把滤波系数置于4个活动电极所对应的点上,在电极之间插入和电位相同的零系数。例如,n=2,滤波器长度为7,相应的权系数依次是:0.12,0,0.38,0,0.38,0,0.12。图1.4.7为二维地电模型正演模拟曲线的滤波处理结果。由图可见,未经滤波的剖面曲线随间隔系数的增大,曲线形态复杂;经。