ZKX's LAB

有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米; 一座抛物线形拱桥 桥下面

2020-10-10知识12

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时 (1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b-3),把D、B的坐标分别代入y=ax2得y=-1/25x2b=-1,2.∴拱桥顶O到CD的距离为1m,∴1/0.2=5小时

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m. (1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b-3),把D、B的坐标分别代入y=ax2得:25a=b100a=b?3,解得a=?125b=?1.y=?125x2;(2)∵b=-1,拱桥顶O到CD的距离为1m,10.2=5(小时).所以再持续5小时到达拱桥顶.

如图 有一座抛物线形拱桥,桥下面在正常水位时,AB宽20m,水位距拱桥最高点5m 1.以拱桥最高点为原定,水平方向为x轴,垂直方向为y轴,建立坐标系则,抛物线方程可写为:y=ax^2,过点(10,-5)5=a*100a=-1/20抛物线方程:y=-(1/20)x^22.水面上升:0.2*15=3mC,D点坐标(x,-2)2=-(1/20)x^2x^2=40x=-2(根号10)水面的宽=4(根号10)

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达。 先设抛物线的解析式,再找出几个点的坐标,代入解析式后可求解.

有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;

随机阅读

qrcode
访问手机版