ZKX's LAB

数据挖掘系统聚类法 数据挖掘中分类和聚类的区别

2020-10-10知识12

用于数据挖掘的聚类算法有哪些,各有何优势? 如果真要做全面介绍的话,有可能是一部专著的篇幅。即使是做综述性的介绍,一篇三五十页的论文也可以写成…

数据挖掘系统聚类法 数据挖掘中分类和聚类的区别

用于数据挖掘的聚类算法有哪些,各有何优势? (https://www. coursera.org/course/ml)A List of Data Science and Machine Learning http://conductrics.com/data-science-resources/) 转载自 THU数据派 官方微信公众。

数据挖掘系统聚类法 数据挖掘中分类和聚类的区别

求大神指导,聚类分析、数据挖掘、关联规则这几个概念中到底是什么关系。谢谢 聚类分析与关联规则2113是数据挖掘中的核5261心技术;4102从统计学的观点看,聚类分析是通过数1653据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳。

数据挖掘系统聚类法 数据挖掘中分类和聚类的区别

数据挖掘中分类和聚类的区别 你好,2113简单地说,分类(Categorization or Classification)就是按照5261某种标准给对象贴标签4102(label),再根据标签来区分归类。简单地说,1653聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。区别是,分类是事先定义好类别,类别数不变。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个类中。要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,.,vn;c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法。

用于数据挖掘的聚类算法有哪些,各有何优势 聚类算般 系统聚类、kmean聚类、两阶段聚类 异检测 相邻析算作聚类系统聚类绘树状图析者直观依据经验选择判断聚类类别数量要求变量统类型kmean均值需要提前指定所聚类类别数量要求变量全部连续性数据类型两阶段聚类 变量类型没要求既包括类变量包括连续变量同两阶段聚类能够自推荐适合聚类

数据挖掘中的聚类算法聚成几类是人为设定还是自动的?用SOM神经网络做聚类是不是就是人为设定好聚几类? 看了之前的回答,都不专业聚类分析是一种无指导的分析,如果理解聚类的核心含义,你就能明白,聚类的数量是没有标准的,必须人为设定,但是特殊的聚类方法可以给你一些参考,比如:系统聚类,它可以生成聚类树,这样你就能直观判断分成几类合适。再比如:二阶聚类,系统模型会自动选择分成几类(如果不人为设定)。聚类是无指导的训练样本,分类是有指导的训练样本,分类就是通过已知的样本建立分类规则,来预测新样本的分类,为什么是有指导的?因为分类是用样本的其它属性来解释、预测我们感兴趣的属性的模型,这是白话。举例:我们知道一批用户的人口统计变量、消费、工资和贷款还款情况,现在我们要用用户的人口统计变量、消费、工资来对用户的贷款还款情况进行预测,这就是分类模型,在这里要用到分类决策树。就是说我们用样本的其它属性来对样本的贷款还款情况建立分类规则,然后对未来的新样本进行预测,判断新用户是否是理想的放贷对象

用于数据挖掘的聚类算法有哪些,各有何优势? 这个问题我也想过,想的不太系统。比较分类算法的话,大概考虑这几个维度:时间空间复杂度,鲁棒性,参数…

用于数据挖掘的聚类算法有哪些,各有何优势 K均值聚类:最适合处理大数据,适用于大样本的个案聚类,分类数明确,适用于连续性变量;系统聚类:适用于个案或变量聚类,对分类数没有要求,连续性和分类型变量均适用;两步聚类:1)分类变量和连续变量均可参与二阶聚类;2)可自动确定分类数;3)适用于大数据集;4)用户可自己定制用于运算的内存容量

学会用聚类算法进行数据挖掘需要怎样的数学基础 数学基础是线性代数和统计学,微积分、泛函分析、泛函分析以及拓扑学和图论。数据挖掘,是指从大量数据中获取隐含的、潜在的是有价值信息的过程,是近年来计算机领域火热的研究内容。作为一个大的命题,为了便于引入讨论,这里以本人目前涉及的游戏工业领域的数据挖掘方法展开讨论。数据挖掘方法在游戏工业领域最初的应用,常常是游戏中的人工智能的开发。例如游戏中的电脑对手,对战类游戏的天梯系统,游戏开发时的关卡自动生成器。这些功能对应着数据挖掘方法中的专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、人工神经网络等。

#无监督学习#数据挖掘算法#聚类#模糊聚类分析#大数据

qrcode
访问手机版