ZKX's LAB

求个问题,非标准的直线参数方程怎么化为标准的参数非常,求个例子手写出来给我,谢谢 抛物型方程化为标准型

2020-07-20知识24

求个问题,非标准的直线参数方程怎么化为标准的参数非常,求个例子手写出来给我,谢谢 直接引入2113参数,即可化为标准5261的参数方程。例如:已知(1)直线4102的参数方程:x=x0+at其中a^2+b^2=1,t属于1653实数,y=y0+bt(2)直线上有两点m1(t1),m2(t2),则|m1m2|=|t1-t2|证明:|m1m2|^2=(x1-x2)^2+(y1-y2)^2(at1-at2)^2+(bt1-bt2)^2(a^2+b^2)(t1-t2)^2(t1-t2)^2m1m2|=|t1-t2|扩展资料:例子曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈[0,2π))(a,b)为圆心坐标,r 为圆半径,θ 为参数,(x,y)为经过点的坐标;椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π))a为长半轴长 b为短半轴长 θ为参数。双曲线的参数方程 x=a secθ(正割)y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数;直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数;或者x=x'+ut,y=y'+vt(t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v);圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径 φ为参数;参考资料来源:-参数方程抛物线的一般公式如何通过平移和旋转得到标准方程 以焦点在X正半轴的标准方程为例,将y=ax^2+bx+c向右平移b/2a个单位,向下平移(4ac-b^2)/4a 个单位,然后顺时针旋转90度即可.(其他的同理.)一阶线性偏微分方程都是抛物型的吗? 抛物型应该是对二阶偏微方程的分类吧,A=0就不适合这种讨论举个例子,按你这样说,对一元二次方程ax^2+bx+c=0,a=0,b=0,c≠0,△=b^2-4ac=0,那表明方程有两个相等实根?为什么要化偏微分方程为标准型,解偏微分方程的时候需要先化为标准型再求解吗? 为了规范。统一求解模式。方便理解。直线参数方程如何化成直线标准参数方程 归一2113化系数即可比如x=x0+at,y=y0+bt可化成5261标准方程:x=x0+pty=y0+qt这里p=a/√(a2+b2),q=b/√(a2+b2)扩展资料:4102参数方程和函数很相似:1653它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F'(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

#抛物线#参数方程#直线方程

随机阅读

qrcode
访问手机版