随机变量X Y不独立,X Y为离散型随机变量,E(XY)怎么算啊 先搞清楚XY的分布列,然后按离散型随机变量的均值计算公式做就是了.估计XY的分布计算要麻烦点.在X与Y不独立的情况下,用条件概率计算,P(AB)=P(A)P(B/A).
随机变量的数学期望 楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEYXY相互独立,那么它们的相关系数:ρ=0ρ=Cov(X,Y)/√(DXDY)=0协方差:Cov(X,Y)=0Cov(X,Y)=EXY-EXEY=0所以有:EXY=EXEY
请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了
数学期望E(XY)怎么计算 如果X、Y独立,则:E(XY)=E(X)*E(Y)如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义.或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)
E(X+Y)=EX+EY这个公式,在XY不独立的情况下成立吗? NO,No,No,楼上全错。这个公式在任何情况下都成立,这是概率论里面数学期望的运算性质E(X+Y)=E(X)+E(Y)如果是E(XY)=E(X)*E(Y),则必须满足X,Y相互独立。我刚刚为你翻了一下概率论课本,这是书上给的