ZKX's LAB

氮碳氦循环 太阳上的普通氢(氕)气是怎么进行聚变的,它聚变为氦的反应过程是怎样的?

2020-10-09知识12

为什么恒星里会有除了H和He一样的元素?比如碳 氧 铁 之类的 恒星并非完全只有氢和氦,其它元素也有少量,我们的太阳就是.重元素都倾向于沉入核心,而且越重的恒星核心温度越高,核聚变的产物越丰富,自然就会产生大量重元素参与核反应.

氮碳氦循环 太阳上的普通氢(氕)气是怎么进行聚变的,它聚变为氦的反应过程是怎样的?

氢聚变为氦,氦聚变为碳,那么氧气是怎么来的?

氮碳氦循环 太阳上的普通氢(氕)气是怎么进行聚变的,它聚变为氦的反应过程是怎样的?

太阳的核聚变是怎么产生的? 首先太阳中不会有自由中子生成,且核心温度不足以使质子直接相碰,反应要通过隧道效应才能实现。太阳属小质量二代中年恒星,所以现在主要是碳循环的核反应,质子-质子链较。

氮碳氦循环 太阳上的普通氢(氕)气是怎么进行聚变的,它聚变为氦的反应过程是怎样的?

太阳上的普通氢(氕)气是怎么进行聚变的,它聚变为氦的反应过程是怎样的? 在太阳核心区域的极端高温高压环境中,不断有氢原子核(氕)经由核聚变反应结合成氦原子核(氦-4),这种核聚变反应过程可分为两种:(1)质子-质子链反应,(2)碳氮氧循环。质子-质子链反应第一步,先是两个质子(即氕原子核)聚变成氘原子核,同时释放出正电子和中微子:这一步的反应速率极其缓慢,这是因为两个质子其实先结合成双质子,而双质子通过β+衰变释放出正电子而形成氘的过程极其罕见。平均而言,一个质子需要10亿年的时间才能聚变为氘。接下来,一个氘原子核和一个质子聚变为氦-3,同时释放出伽马射线:到了这一步之后,氦-3会通过三种反应过程来合成氦-4。第一种pp1分支,一个氦-3与另一个氦-3直接聚变为氦-4,同时产生两个质子:第二种pp2分支,一个氦-3与一个氦-4聚变为铍-7,并释放出伽马射线:然后,铍-7结合电子演变为锂-7和中微子:最后,一个锂-7和一个质子聚变为两个氦-4:第三种pp3分支,同pp2分支一样,一个氦-3先与一个氦-4聚变为铍-7,并释放出伽马射线:然后,铍-7与一个质子聚变为硼-8,并释放出伽马射线:之后,硼-8再衰变为铍-8和正电子、中微子:最后,铍-8进一步衰变为两个氦-4:碳氮氧循环这种反应过程较为复杂,这里就简单介绍。

碳氮氧循环的特殊情况 特殊情况有一个较小分支的反应,在太阳核心中发生的只占了0.04%的量,最后的产物不是12碳和4氦,而是16氧和一个光子,取代进行的过程如下:15N+1H→16O+γ+12.13 MeV16O+1H→17F+γ+0.60 MeV17F→17O+e+νe+2.76 MeV17O+1H→14N+4He+1.19 MeV

碳氮氧循环问题 1、四个2、中微子、电子、还有一个氦4.(还有能量,不过能量不是物质但它可以由光子携带)3、主要是碳12经过质子的轰炸而变化。不过过程怎么样,中间产物都是C12、N13、C13。

碳氮氧循环问题 1、四个 2、中微子、电子、还有一个氦4.(还有能量,不过能量不是物质但它可以由光子携带)3、主要是碳12经过质子的轰炸而变化。不过过程怎么样,中间产物都是C12、N13、。

大质量恒星主序期的碳、氮、氧循环的碳、氮从何而来? 4个氢合成一个氦,之后3氦聚变形成碳

气体型循环的氮的循环 氮是构成生物蛋白质和核酸的主要元素,因此它与碳、氢、氧一样在生物学上具有重要的意义。氮的生物地化循环过程非常复杂,循环性能极为完善(图5-39)。氮的循环与碳的循环大体相似,但也有明显差别。虽然生物所生活的大气圈,其含氮量(79%)比含二氧化碳量(0.03~0.04%)要高得多,但是氮的气体形式(N2)只能被极少数的生物所利用。虽然所有的生物都要以代谢产物的形式排出碳和氮,但几乎从不以N2的形式排放含氮废物。在各种营养物质的循环中,氮的循环实际上是牵连生物最多和最复杂的,这不仅是因为含氮的化合物很多,而且在氮循环的很多环节上都有特定的微生物参加。氮在生物圈内的分布见表5-15。由于大气成分的79%是氮气,所以氮最重要的储存库就是大气圈,但是大多数生物又不能直接利用氮气,所以以无机氮形式(氨、亚硝酸盐和硝酸盐)和有机氮形式(尿素、蛋白质和核酸等)存在的氮库对生物最为重要。大气中的氮只有被固定为无机氮化合物(主要是硝酸盐和氨)以后,才能被生物所利用。虽然固氮的方法有物理化学法和生物法两种,但其中以生物固氮法最为重要。据估计,靠电化学和光化学固氮,每年平均可固氮7.6×106吨,而生物固氮平均每年的固氮量为54×106。

#质子质量#恒星形成#原子核

随机阅读

qrcode
访问手机版