ZKX's LAB

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 系统输出的协方差函数

2020-10-09知识14

怎么用一组样本估计自协方差函数 x(t)自协方差函数:R(τ)=E[(x(t)-μx)(x(t+τ)-μx)]其中 τ 是时间延迟,μx 是x(t)的数学期望.对于离散数据公式类似.

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 系统输出的协方差函数

怎么计算自协方差函数 2113自协方差在统计学中,特定5261时间序列或者连续信号4102Xt的自协方差是信号与其经过时间平移1653的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。(自协方差的概念)自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 系统输出的协方差函数

关于协方差 二维随机向量(ξ,η),称随机变量函数(ξ-Eξ)(η-Eη)的数学期望为ξ与η的协方差,记作cov(ξ,η)习惯用D(ξ+η)=Dξ+Dη+2cov(ξ,η)来计算协方差Dξ=Eξ2-(Eξ)2=55-43.56=11.44Dη=Eη2-(Eη)2=75-57.76=14.24D(ξ+η)=E(ξ+η)2-(E(ξ+η))2=225-201.64=23.36cov(ξ,η)=[D(ξ+η)-Dξ-Dη]/2=-1.16这两组数据的协方差是-1.16,根据协方差还可以算相关系数,手算很麻烦,用excel吧~

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 系统输出的协方差函数

协方差到底是什么意思啊? 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。扩展资料协方差函数在概率论和统计学中,协方差是一种两个变量如何相关变化的度量,而协方差函数或核函数,描述一个随机过程或随机场中的空间上的协方差。对于一个随机场或随机过程Z(x)在定义域D,一个协方差函数C(x,y)给出在两个点x和y的值的协方差:C(x,y)在两种情况下称为自协方差函数:在时间序列(概念一致,除了x和y指时间点而不是空间点),以及在多变量随机场(指变量自己的协方差,而不是互协方差)。参考资料来源:-协方差

用excel算协方差用哪个函数? 语法:COVAR(array1,array2)Array1 第一个所含数据为整数的单元格区域。Array2 第二个所含数据为整数的单元格区域。说明:参数必须是数字,或者是包含数字的名称、数组或引用。如果数组或引用参数包含文本、逻辑值或空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。如果 array1 和 array2 所含数据点的个数不等,则函数 COVAR 返回错误值#N/A。如果 array1 和 array2 当中有一个为空,则函数 COVAR 返回错误值#DIV/0。协方差计算公式为:其中 x 和 y 是样本平均值 AVERAGE(array1)和 AVERAGE(array2),且 n 是样本大小。

协方差函数和方差函数在EXCEL中怎么显示? 协方差是=covar()方差是=var()

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…

协方差法估计:pcov和pmcov函数 自回归功率谱估计的协方差方法,是一种基于使前向预测误差最小的技术;而改进的协方差方法则是同时使前向和后向预测误差均最小的技术。在MATLAB函数的工具箱里,函数pcov用来实现自回归功率谱估计的协方差方法;而函数pmcov用来实现自回归功率谱估计的改进的协方差方法。这两个函数的具体使用方法,与前面所述的pyulear函数和pburg函数大致相同。[例4-7]比较协方差方法与改进的协方差方法在噪声信号的功率谱估计中的效果,如图4-16所示。通过结果图可以看出,这两种方法的估计效果基本上相同。Fs=500;h=fir1(18,0.3);r=randn(1024,1);x=filter(h,1,r);[P1,f]=pcov(x,18,[],Fs);[P2,f]=pmcov(x,18,[],Fs);图4-16 协方差法以及改进的协方差法功率谱估计的比较结果图Pxx1=10*log10(P1);Pxx2=10*log10(P2);plot(f,Pxx1,‘’,f,Pxx2,‘.’);ylabel(‘功率谱密度(dB)’);xlabel(‘频率(Hz)’);legend(‘协方差方法’,‘改进的协方差方法’)。

#matlab函数#协方差

随机阅读

qrcode
访问手机版