ZKX's LAB

直线椭圆计算过程 求椭圆弦长公式的推导过程啊!

2020-07-20知识12

直线与椭圆相交的弦长公式 直线y=kx+b椭圆:x2/a2+y2/b2=1弦长=√(1+k2)[(xA+xB)2-4xAxB]其中A,B是直线和椭圆的交点xA和xB是点A和B的横坐标直线截椭圆的弦长公式,要详细证明,一步步推导~谢谢~! ^弦长=│x1-x2│√2113(k^2+1)=│y1-y2│√[(1/k^2)+1]椭圆弦长公式通用5261方法是将直线y=kx+b代入曲4102线方程,化为关于x(或关于y)的一1653元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。假设直线为:y=kx+b代入椭圆的方程可得:x^2/a^2+(kx+b)^2/b^2=1。设两交点为A、B,点A为(x1,y1),点B为(X2,Y2)则有AB=√(x1-x2)^2+(y1-y2)^2把y1=kx1+by,2=kx2+b分别代入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2(x1-x2)^2+k^2(x1-x2)^2(1+k^2)*│x1-x2│扩展资料同理可以证明:弦长=│y1-y2│√[(1/k^2)+1]设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式。参考资料来源:-椭圆弦长公式求直线带入椭圆方程的过程,要详细 你参考看看~椭圆上的点到直线上的距离怎么求? 点到直线的距离。1.直线方程:Ax+By+C=02.坐标:(Xo,Yo)3.公式:│AXo+BYo+C│除以√(A2+B2)连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A2+B2)。点到直线的距离叫做垂线段。过程与方法:1.通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;2.把两条平行直线的距离关系转化为点到直线的距离。椭圆的计算公式? 椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>;b>;0)2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1(a>;b>;0)其中a>;0,b>;0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别e799bee5baa6e79fa5e98193e59b9ee7ad9431333335303437叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>;b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在x0,y0点的切线就是:xx0/a^2+yy0/b^2=1公式椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如L=∫[0,。直线与椭圆相交的线的长度的弦长公式是什么 如下图: 方法: 焦点弦,A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex;设直线;与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为k,则 。椭圆周长怎么计算,几种方法? 一、椭圆周长、面积计算公式根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>;b>;0。椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)62616964757a686964616fe78988e69d8331333332643866加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。二、椭圆常数由来及周长、面积公式推导过程(一)发现椭圆常数常数在于探索和发现。椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。椭圆三要素确定任意两项就确定椭圆。椭圆三要素其中两项的某种数学关系决定椭圆周长和面积。椭圆的周长取值范围:4aπa(1)椭圆周长猜想:L=(2πa-4a)T(2)T是猜想的椭圆周率。将(1)等式与(2)等式合并,得:4a<;(2πa-4a)Tπa(3)根据不等式基本性质,将不等式(3)同除(2πa-4a),有:4a/(2πa-4a)πa/(2πa-4a)(4)简化表达式(4):2/(π-2)π/(π-2)定义:K1=2/(π-2);K2=π/(π-2)计算K1、K2的值会发现K1、K2是两个非常奇特的数:K1=1.75193839388411…K2=2。.求椭圆弦长公式的推导过程啊。 弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点.证明:假设直线为:y=kx+b代入椭圆的方程可得:x^2/a^2+(kx+b)^2/b^2=1,设两交点为A、B,点A为(x1.y1),点B为(X2.Y2)则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别代入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2(x1-x2)^2+k^2(x1-x2)^2(1+k^2)*│x1-x2│同理可以证明:弦长=│y1-y2│√[(1/k^2)+1].椭圆的弧长计算公式 设半径为r 由勾股定理得r^2-(r-50)^2=105^2 解出r=135.25CM周长为2*πr=270.5π 这段弧所对的圆心角为4*arctan10/21所以弧长为270.5π*4*arctan10/21/360°椭圆问题(详细计算过程) 解:设椭圆方程为ax2+by2=1(a>;0,b>;0)与直线y=x+1联立消去y得:(a+b)x2+2bx+b-1=0由韦达定理可知:x1+x2=-2b/(a+b),x1x2=(b-1)/(a+b)y1y2=(x1+1)(x2+1)=x1x2+x1+x2+1=(a-1)/(a+b)因为OP⊥OQ,所以x1x2+y1y2=(b-1)/(a+b)+(a-1)/(a+b)=0所以a+b=2 ①,所以x1+x2=-2b/(a+b)=-b,x1x2=(b-1)/2因为|PQ|=√10/2,所以10/4=|PQ|2=(1+12)[(x1+x2)2-4x1x2]=2[b2-2(b-1)]②①②联立解得:a=1/2,b=3/2,或a=3/2,b=1/2椭圆方程为x2/2+3y2/2=1或3x2/2+y2/2=1

#椭圆#椭圆的标准方程#椭圆面积公式#直线方程

随机阅读

qrcode
访问手机版