ZKX's LAB

对称矩阵聚类 聚类分析法

2020-10-09知识11

k-means算法怎么为对称矩阵进行聚类? 几种典型的聚类融合算法:1.基于超图划分的聚类融合算法(1)Cluster-based Similarity Partitioning Algorithm(GSPA)(2)Hyper Graph-Partitioning Algorithm(HGPA)(3)Meta-Clustering Algorithm(MCLA)2.基于关联矩阵的聚类融合算法Voting-K-Means算法。3.基于投票策略的聚类融合算法w-vote是一种典型的基于加权投票的聚类融合算法。同时还有基于互信息的聚类融合算法和基于有限混合模型的聚类融合算法。二、基于关联矩阵的聚类融合算法—Voting-K-Means算法Voting-K-Means算法是一种基于关联矩阵的聚类融合算法,关联矩阵的每一行和每一列代表一个数据点,关联矩阵的元素表示数据集中数据点对共同出现在同一个簇中的概率。算法过程:1.在一个数据集上得到若干个聚类成员;2.依次扫描这些聚类成员,如果数据点i和j在某个聚类成员中被划分到同一个簇中,那么就在关联矩阵对应的位置计数加1;关联矩阵中的元素值越大,说明该元素对应的两个数据点被划分到同一个簇中的概率越大;3.得到关联矩阵之后,Voting-K-Means算法依次检查关联矩阵中的每个元素,如果它的值大于算法预先设定的阀值,就把这个元素对应的两个数据点划分到同一个簇中。Voting-K-Means算法的优。

对称矩阵聚类 聚类分析法

matlab中聚类算法 急求聚类算法的程序,用matlab实现 聚类分析的概念主要是来自多元统计分析,例如,考虑二维坐标系上有散落的许多点,这时,需要对散点进行合理的分类,就。

对称矩阵聚类 聚类分析法

主成分分析和因子分析的区别 主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构。综合指标即为主成分。所得出的少数几个主成分,。

对称矩阵聚类 聚类分析法

密度聚类可以用来分析地理位置聚簇吗 聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的亲疏程度进行分类.距离的种类很多,其中欧式距离在聚类分析中用得最广,它的表达式如下:其中Xik表示第i个样品的第k个指标的观测值,Xjk表示第j个样品的第k个指标的观测值,dij为第i个样品与第j个样品之间的欧氏距离.若dij越小,那么第i与j两个样品之间的性质就越接近.性质接近的样品就可以划为一类.当确定了样品之间的距离之后,就要对样品进行分类.分类的方法很多,本节只介绍系统聚类法,它是聚类分析中应用最广泛的一种方法.首先将n个样品每个自成一类,然后每次将具有最小距离的两类合并成一类,合并后重新计算类与类之间的距离,这个过程一直持续到所有样品归为一类为止.分类结果可以画成一张直观的聚类谱系图.应用系统聚类法进行聚类分析的步骤如下:①确定待分类的样品的指标;②收集数据;③对数据进行变换处理(如标准化或规格化);④使各个样品自成一类,即n个样品一共有n类;⑤计算各类之间的距离,得到一个距离对称矩阵,将距离最近的两个类并成一类;⑥并类后,如果类的个数大于1,那么重新计算各类之间的距离,继续并类,直至所有样品归为一类为止;⑦最后绘制系统聚类谱系图,按不同的分类。

聚类分析法 聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。(一)系统聚类法系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。1.数据标准化在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,。

为什么(多个)向量共轭,使用的矩阵一定是要 对称正定 的? 如果这里的G不是对称正定的,在n维空间上,同样有可能获得满足 diT G dj=0 的 n个di 向量啊,这些向量…

什么是聚类分析?说说它在地理学中的应用。 聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的亲疏程度进行分类。距离的种类很多,其中欧式距离在聚类分析中用得最广,它的表达式如下:其中Xik表示第i个样品的第k个指标的观测值,Xjk表示第j个样品的第k个指标的观测值,dij为第i个样品与第j个样品之间的欧氏距离。若dij越小,那么第i与j两个样品之间的性质就越接近。性质接近的样品就可以划为一类。当确定了样品之间的距离之后,就要对样品进行分类。分类的方法很多,本节只介绍系统聚类法,它是聚类分析中应用最广泛的一种方法。首先将n个样品每个自成一类,然后每次将具有最小距离的两类合并成一类,合并后重新计算类与类之间的距离,这个过程一直持续到所有样品归为一类为止。分类结果可以画成一张直观的聚类谱系图。应用系统聚类法进行聚类分析的步骤如下:①确定待分类的样品的指标;②收集数据;③对数据进行变换处理(如标准化或规格化);④使各个样品自成一类,即n个样品一共有n类;⑤计算各类之间的距离,得到一个距离对称矩阵,将距离最近的两个类并成一类;⑥并类后,如果类的个数大于1,那么重新计算各类之间的距离,继续并类,直至所有样品归为一类为止;⑦最后。

#模糊聚类分析#算法#矩阵#聚类#地理学

随机阅读

qrcode
访问手机版