ZKX's LAB

计数原理相关公式

2020-07-16知识32
分类加法计数原理和分步乘法计数原理的公式是什么,A 分类2113加法计数原理、分步乘法计数原理通过实例,5261总结出分类4102加法计数原理、分步乘法计数原理;能1653根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。⑴分类加法计数原理:完成一件事有几类办法,各类办法相互独立,每类办法中又有多种不同的办法,则完成这件事的不同办法数是各类不同方法种数的和。⑵分步乘法计数原理:完成一件事,需要分成几个步骤,每一步的完成有多种不同的方法,则完成这件事的不同方法种数是各种不同的方法数的乘积。排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。 分步计数原理 困惑中啊:三科老师都布置了作业,在同一时刻4名学生都做作业的可能情形有多少中?我有两种想法啊: 第一个: 4个学生,每个学生都可以做3门功课里的任何一中所以是3*3*3*3=81 ... 分类加法计数原理和分步乘法计数原理的公式是什么,A和C又各代表什么?求解,满意的话我一定采纳 分类要相加,分步要相乘。A是指阶乘,A(4/4)就是4×3×2×1 如果是C(2/4)就是(4×3)/(2×1) 分类计数原理和分步计数原理的区别 分类计数原理2113:做一件事,有n类办法,在第1类办法中5261有m1种不同的方法,在第2类办法4102中有m2种不同的方法,…,1653在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是我的总数。举例说明:分类计数原理:某旅游团从南京到上海,可以乘汽车,也可以乘火车,还可以乘飞机。假定汽车每日有3班,火车每日2班,飞机每日1班,那么一天中从南京到上海共有多少种不同走法?答案是3+2+1=6种分步计数原理:从A地去C地,一定会经过B地。从A地到B地有2条道路,从B地到C地有三条道路,问现在要从从A地去C地,有几种选择方案呢?答案是2×3=6种 分步计数原理中公式:C上标n下标m=m*(m-1)*.*(m-n+1)\/n!是怎么推出来? 你说的是组合公式了,组合公式可以由排列公式得到,排列公式可以由乘法原理得到.根据乘法原理从m个互不相同的球中,每次拿出1个不放回,共取n个,考虑顺序的话,可以有多少中不同的取法呢,取第一个m种取法,取第二个(m-1)种. 分类加法计数原理和分步乘法计数原理的公式是什么,A和C又各代表什么?求解,满意的话我一定采纳 分类要相加,分步要相乘。A是指阶乘,A(4/4)就是4×3×2×1 如果是C(2/4)就是(4×3)/(2×1) 高中数学计数原理公式 公式自己多记多背啦 计数原理 分类加法和分步乘法计数原理的依据分别是什么? 通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。⑴分类加法计数原理:完成一件事有几类法,各类法相互独立,每类法中又有多种不同的法,则完成这件事的不同法数是各类不同方法种数的和。⑵分步乘法计数原理:完成一件事,需要分成几个步骤,每一步的完成有多种不同的方法,则完成这件事的不同方法种数是各种不同的方法数的乘积。能用计数原理证明二项式定理;会用二项式定理解决与二项式有关的简单问题。 高中理科数学的计数原理有什么解题技巧 1.分类计数原理(1)首先弄清要完成一件什么事,怎样才算完成这件事;(2)要确定一个分类标准,分类要做到“不重不漏”,即任意完成这件事的两种方法都是不同的,且完成这件事的每一种方法必属于某一类;(3)各类之间相互独立,且每类里的每种方法都能独立完成这件事;(4)因为各类方法数相加即可得到完成这件事的方法总数,所以分e799bee5baa6e58685e5aeb931333332623964类计数原理又叫加法原理. 2.分步计数原理(1)首先弄清要完成一件什么事,怎样才算完成这件事;(2)确定一个合适的分步标准,注意每个步骤相互依存,缺一不可,只有连续完成每一个步骤,这件事才算完成;(3)因为每步方法数相乘得到完成这件事的方法总数,所以分步计数原理又叫乘法原理. 两个原理的相同点与不同点: 1.共同点:都是计数原理,即统计完成某件事不同方法种数的原理,因此都要先弄清是怎样一件事,如何才算完成这件事. 2.不同点:分类计数原理中的n类办法相互独立,且每类里的每种方法都可独立完成这件事;分步计数原理中的各个步骤互相依存,每一步都不能独立完成该件事,只有各个步骤都完成了,这件事才算完成. 总结:(1)如果完成一件事的各种方法是相互独立的,那么计算...

#乘法公式#计数原理#乘法原理#二项式定理

随机阅读

qrcode
访问手机版