怎么应用费马原理证明光的折射是光程为的最小值? 费马原理:光在指定的两点间传播,实际的光程总是一个极值。光在均匀介质中沿直线传播,在介质分界面上的…
费马原理的原理 费马原理(Fermat's principle)最早由法国2113科学家皮埃5261尔·德·费马在1662年提出:4102光传播的路径是光程取1653极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。扩展资料:用微分或变分法可以从费马原理导出以下三个几何光学定律:1、光线在真空中的直线传播。2、光的反射定律-光线在界面上的反射,入射角必须等于出射角。3、光的折射定律(斯涅尔定律)。最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。参考资料来源:-费马原理
原理的光程最小理论证明折射定律。 这不是高中的问题吧!
什么是等光程原理 以两个折射曲2113面为边界的透明体称5261为透镜,通常多以光学玻璃为原材料,磨制成4102形后将折射面抛光而成。两个1653折射面中可以有一个平面,但两个折射面都是平面者不能称为透镜。透镜由于两个表面的折射,具有对光束的会聚或发散作用,能在任何要求位置形成物体的像。因此是光学成像系统和照明系统中不可缺少的光学零件。单独一片透镜往往不能满足校正像差的要求;在光学仪器设计过程中经常用几片透镜构成组合体,从校正像差的需要出发,确定各透镜的结构参量,使整个组合体既满足成像和使用要求,又达到指定的相对孔径、视场角等光学性能。与理想成像系统不同的是,实际光学系统只有在近轴区才具有与理想光学系统相同的性质,及只有在孔径和视场非常小的情况下才能成完善像。实际系统的孔径和视场都有一定的大小,并且光学系统的功能和使用价值恰恰又与相对孔径和视场这两个因素密切相关,因此,实际系统不可能对物体成完善像。扩展资料等光程点的应用高倍显微镜的物镜口径如果较大,入射光入射角较大,不满足傍轴条件,成像精度较差;如果口径较小,光通量较小,成像亮度较弱。利用球面透镜的齐明点可以缓解这对矛盾。油浸物镜实际使用时不能将样品放入。