ZKX's LAB

计算空间两条直线距离 两条空间异面直线的距离公式?

2020-10-08知识17

两条空间异面直线的距离公式? 设直线L1,L2的方向向量分别为m,n;A为L1上一点,B为L2上一点;则:距离d=向量 m,n,AB 的混合积/|m x n|d=[m n AB]/|m x n|[]表示混合积

计算空间两条直线距离 两条空间异面直线的距离公式?

空间中,两条异面直线的距离怎样求 ①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在向量n上的射影d,则异面直线a、b间的距离为

计算空间两条直线距离 两条空间异面直线的距离公式?

怎样求点到两空间平面相交直线的距离? 1.先求出过点与直线的垂直的平面:法向量为n=|i j k 1 1-1 2-1 1|=(0,-3,-3)=-3(0,1,1)所以平面为:(y+1)+(z-2)=0 y+z-1=0 2.求出交点 x+y-z+1=0,2x-y+z-4=0 y+z-1=0 解得 x=1 y=-1/2 z=3/2 3.距离 d=√(3-1)2+(-1+1/2)2+(2-3/2)2=(3√2)/2

计算空间两条直线距离 两条空间异面直线的距离公式?

空间中两异面直线距离公式 一堆答非所问的直线2113L1的方向向5261量为s1,L2的方向向量为s2,点4102A在直线L1上,点B在直线L2上,d=|[s1 s2 AB]|/|s1 x s2|[s1 s2 AB]为混合积1653s1 x s2为向量积

两条空间异面直线的距离公式 异面直线的距离确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离;二是转化为两条异面直线分别所在的两个平行平面之间的距离.

两条空间直线求最短距离(或最接近点) 首先2113将直线方程化为对称式,得到其方向向量n1=(a1,b1,c1),n2=(a2,b2,c2)。5261再将两向量4102叉乘得到其公垂向量N=(x,y,z),在两直线上分别选取点A,B(任意1653),得到向量AB,求向量AB在向量N方向的投影即为两异面直线间的距离了(就是最短距离)。d=|向量N*向量AB|/|向量N|(上面是两向量的数量积,下面是取模),设交点为C,D,带入公垂线N的对称式中,又因为C,D两点分别满足一开始的直线方程,所以得到关于C(或D)的两个连等方程。可以得出坐标为(1a,3B)。扩展资料:点到直线的距离计算方法:函数法证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。不等式法证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。转化法证:设直线的倾斜角为过点P作PM∥轴交于M显然所以,易得∠MPQ=或∠MPQ,在两种情况下都有所。三角形法证:P作PM∥轴交于M,过点P作PN∥轴交于N,由解法三知;同理得在Rt△MPN中,PQ是斜边上的高。参考资料来源:-点到直线的距离

空间中,两条异面直线的距离怎样求 最低0.27元/天开通文库会员,可在文库查看完整内容>;原发布者:暗夜伏特加如何求异面直线的距离 求异面直线距离方法:(1)(直接法)当公垂线段直接能作出时,直接求。此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键。(2)(转化法)把线线距离转化为线面距离,如求异面直线a,b距离,先作出过a且平行于b的平面α,则b与α距离就是a,b距离。(线面转化法)也可以转化为过a平行b的平面和过b且平行于a的平面,两平行平面的距离就是两条异面直线距离。(3)(体积桥法)利用线面距再转化为锥体的高用体积公式来求。(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解。两条异面直线间距离问题,教学大纲中要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其它解法,要适度接触,以开阔思路。典型题目分析 正方体ABCD-A1B1C1D1棱长为a,求异面直线AC与BC1的距离。解法1:(直接法)取BC的中点P,连结PD,PB1分别交AC,BC1于M,N点,易证:DB1/MN,DB1⊥AC,DB1⊥BC1,∴MN为异面直线AC与BC1的公垂线段,易证:MN=B1D=a。(如图1所示)小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解。解法2:。

空间中两条直线之间的距离的求法,大学数学

求空间两平行直线的距离 ^设两2113条直线方程为ax+by+c1=0ax+by+c2=0两平行直线间的5261距4102离就是从一条直线上任一点到另一条直线的距离,设点p(a,b)在直线ax+by+c1=0上,则1653满足aa+bb+c1=0,即ab+bb=-c1,由点到直线距回离公式,p到直线ax+by+c2=0距离为d=|aa+bb+c2|/√答(a^2+b^2)=|-c1+c2|/√(a^2+b^2)c1-c2|/√(a^2+b^2)

#异面直线#直线方程#平行向量#向量叉乘#空间向量

随机阅读

qrcode
访问手机版