关于康普顿效应的2个问题 1.谁说能量的传递需要力的作用?一个温度高的将能量传给温度低的,这种热能的传递就不需要力.康普顿散射中光子能量变小问题是利用动量定理和能量守恒解决的,和力的问题无关.2.瑞利散射是入射光在线度小于光波长的微粒上散射后散射光和入射光波长相同的现象.凡是粒子尺度远小于入射波长的散射现象,统称为瑞利散射.这种散射光的强度随不同的散射角(入射光方向和散射光方向的夹角)而变.物质对X射线的散射.又称康普顿效应.康普顿效应可归结为:①设入射X射线的波长为λ0,在散射光中除原波长的谱线外还出现波长λ>λ0的谱线.②波长差Δλ=λ-λ0随散射角θ(散射光与入射光间的夹角)的增加而增加;散射光中波长为λ的谱线强度随θ的增加而增强.③对同元素的散射物质,同一散射角时的波长差Δλ均相同;波长为λ的谱线强度随散射元素的原子序数的增加而减弱.
什么物质能阻挡核辐射穿透,为什么? 简单地说。α不用防,空气就能挡住。阿尔法粒子在空气中也就几厘米的样子。β也不用太上心,有点东…
背散射分析的原理 背散射分析中,入射离子同靶原子核发生的是弹性碰撞过程,利用能量守恒定律和动量守恒定律即可导出背散射离子能量E1式中m、M分别为入射离子和靶原子的质量;E为入射离子在碰撞前的瞬时能量,若碰撞发生在靶表面,则E就是入射离子的初始能量 E0;θ为实验室坐标系中的散射角(图1)。k常称为背散射运动学因子。对确定种类、能量的入射离子和确定的散射角,散射离子能量决定于靶原子的质量,靶原子质量愈大,背散射离子能量也愈大。因此从背散射能谱可以确定靶物质中所含元素的种类。入射离子在靶物质内除因同靶核的库仑相互作用而损失能量外,在射入和射出靶物质的路径上也要损失能量,这就是电离能量损失,通常用阻止本领表示,x为离子运动的距离。由于这个物理过程,使得探测到的对同种原子核的背散射的出射离子能量,与发生背散射的深度有关,发生在靶内深度为t的能量E2要比发生在表面的能量 kE0小。如靶面法线与入射束和散射束方向的夹角分别为θ1和θ2(图2),则kE0与E2的差ΔE为,上式中的第一项同入射离子在入射路径上的电离能量损失有关,第二项则是背散射离子在出射路径上的能量标度转变为靶物质的深度坐标,因此分析背散射能谱可得靶内原子深度分布。从背散射。