设{N(t),t≥0}是强度为λ的泊松过程,定义随机过程Y(t)=N(t+L)-N(t),其中常数L>0.试求Y(t)的均值函数和自相关 因N(t)是强度为λ的泊松过程,所以N(t+L)-N(t)~π(λL),从而 ;nbsp;E[Y(t)]=E[N(t+L)-N(t)]=λL, ;nbsp;RY(s,t)=E{[N(s+L)-N(s)][N(t+L)-N(t)]} ;nbsp;E[N。
自考 概率论与数理统计(经管类) 那几章是重点 1:条件概率(全概率公式、贝叶斯公式,二项概率公式主要和后面章节的东西联系在一起考)2:随机变量分布中的:①离散型 掌握 二项分布、泊松分布 ②连续型 掌握均匀分布、。
泊松分布参数为2的协方差怎么算
泊松分布的期望和方差分别是什么公式,如果已知入的值,如何求P(X=0)? 泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。分析过程如下62616964757a686964616fe58685e5aeb931333431353363:求解泊松分布的期望过程如下:求解泊松分布的方差过程如下:泊松分布的概率函数为:对于P(X=0),可知k=0,代入上式有:P(X=0)=e^(-λ)。扩展资料:一、期望的计算方法1、利用定义计算设P(x)是一个离散概率分布函数,自变量的取值范围为{x1,x2,?,xn}。其期望被定义为:E(x)=∑nk=1xkP(xk)E(x)=∑k=1nxkP(xk);P(x)是一个连续概率密度函数。其期望为:E(x)=∫+∞?∞xp(x)dxE(x)=∫?∞+∞xp(x)dx。2、利用性质计算线性运算规则:期望服从线性性质(可以很容易从期望的定义公式中导出)。因此线性运算的期望等于期望的线性运算:E(ax+by+c)=aE(x)+bE(y)+cE(ax+by+c)=aE(x)+bE(y)+c;乘积的期望不等于期望的乘积,除非变量相互独立。因此,如果x和y相互独立,则E(xy)=E(x)E(y)E(xy)=E(x)E(y)E(xy)=E(x)E(y)E(xy)=E(x)E(y)。二、方差的计算方法1、利用定义计算:Var(x)=E((x?E(x))2)2、反复利用期望的线性性质,可以算出方差:Var(x)=E(x2)?(E(x))23、方差不满足线性性质,两个变量的线性组合方差计算方法如下:Var(ax+by)=。
泊松分布参数为2的协方差怎么算 泊松分布P(λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差现在X是服从参数为2的泊松分布,所以E(X)=D(X)=2
设随机变量X服从参数为2的泊松分布,Y~N(0,4),且X与Y的协方差为Cov(X,Y)=2,令Z=3X-2Y,求D(Z) 你用类似于平方差的公式展开就可以了的,交叉项就是协方差。