ZKX's LAB

信道衰落分哪几种,分别说明抵抗这些衰落的方法 信道的分类快衰落

2020-07-20知识20

什么是Nakagami衰落信道? Nakagami信道模型对实测数据具有很好的拟合性,因此它在理论上已经成为一类具有广泛代表意义的无线信道模型并具有重要的应用价值.整数阶(m为整数)的Nakagami信道模型仿真相对容易实现,而对分数阶(m不为整数)的互相关Nakagami信道仿真的研究较少,缺乏简单有效的方法.本文主要介绍采用信道分解合成技术产生Nakagami信道的基本原理和具体步骤,并给出了部分仿真的结果,证实了该方法的有效性.通过仿真概率密度曲线逼近理论曲线的程度和程序运行效率两方面对生成Nakagami-m分布随机变量的几种典型方法-Brute force法、正弦求和法、逆变换法性能进行研究和比较.结果表明,无论是对理论曲线的逼近程度还是运行效率,逆变换法都是三种方法中最优的。慢衰落和快衰落产生的原因是什么? 1、慢衰落产生的原因:路径损耗,这是慢衰落的主要原因。由大气折射、大气湍流、大气层结等平均大气条件的变化而引起的,通常与频率的关系不大,而主要与气象条件、电路。频率选择性衰落信道和瑞利信道的区别 瑞利衰落是一种特殊的多径衰落瑞利衰落(Rayleigh Fading):在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。在通信系统中,由于通信地面站天线波束较宽,受地物、地貌和海况等诸多因素的影响,使接收机收到经折射、反射和直射等几条路径到达的电磁波,这种现象就是多径效应。这些不同路径到达的电磁波射线相位不一致且具有时变性,导致接收信号呈衰落状态;这些电磁波射线到达的时延不同,又导致码间干扰。若多射线强度较大,且时延差不能忽略,则会产生误码,这种误码靠增加发射功率是不能消除的,而由此多径效应产生的衰落叫多径衰落有谁知道快衰落无线信道的特性 快衰落义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。查看详细规范>;>;快衰落(Fast Fading):移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象。主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,其变化率比慢衰落快。10概述快衰落快衰落主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,它反映微观小范围内数十波长量级接收电平的均值变化而产生的损耗,其变化率比慢衰落快,故称它为快衰落,由于快衰落表示接收信号的短期变化,所以又称短期衰落(short-term-fading)。移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。可见快衰落与慢衰落并不是两个独立的衰落(虽然它们的产生原因不同),快。请简述什么是频率选择性衰落信道?什么是时间选择性衰落信道 在移动通信中,移动信道是多径传播的随参信道,接收信号载频发生多普勒频移。设发射信号 是一个频率为fc的正弦波,对于到达移动台的某一径入射波和运动方向的夹角为a,fm=v。快衰落的分类 是指不同的频率衰落特性不一样,引起时延扩散,在不同的频段上衰落特性不一样。它是信道在时域的时延扩散而引起了在频域的选择性衰落。最有效的克服方法有自适应均衡、OFDM及 CDMA系统中的RAKE接收等。多径衰落可以影响移动接收机或固定接收机。移动接收机以及在包含移动物体的信道中工作的接收机还必须处理影响信号幅度和相位的其它因素。这些效应可以描述为时间变化或空间变化的函数。如果接收机以恒定的速度移动,在不同时间上发送脉冲与在不同位置发送脉冲完全相同。在变化的信道发送信号时,知道这些条件在多长时间内是稳定的非常重要。根据相干时间还可以在频域中查看时间变化。一直移动的接收机会经受频移,而这取决于接收信号的到达角度。时间展宽会导致信号在时间上展宽;而时间(或空间)上的变化会导致信号在频率上展宽。接收机并不是在一个频率上得到一个信号,而是在不同频率上得到信号的不同部分。这种多普勒展宽与相干时间T0成负相关的关系。

#信号频率#多径衰落#信道带宽#多径效应#频率选择性衰落

随机阅读

qrcode
访问手机版