求数学期望与方差的作用?为什么高二要学习这些?
已知数学期望,怎样求方差?? 1.首先你需要知道数学期望的定义为EX=∫xf(x)dx在0到正无穷上面的定积分,其中f(x)表示的是概率密度函数(这是对连续的)。2.之后你要知道一个公式就是方差公式D(X)=E{[X。
概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的
问一道求数学期望和方差的题 设X=n+k,即n个“合格品”和k个“不合格品”。那么,n服从“负二项分布”,即P(n=i)=C(i+k-1,k-1)x p^k x(1-p)^i.这个分布的均值和方差分别是E(n)=k(1-p)/p;D(n)=k(1-p)/p^2.所以,X的均值和方差分别是E(X)=E(n)+k=k(1-p)/p+k;D(X)=D(n)=k(1-p)/p^2.负二项分布当r是整数时,负二项分布又称帕斯卡分布,其概率质量函数为 它表示,已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利试验中,一件事件刚好在第r+k次试验出现第r次的概率。p{X=k}=f(k;r,p)=(k+r-1)。[k。(r-1)。p^r(1-p)^k,k=0,1,2,.,0,r>;0.EX=sum(k=0->;正无穷)kf(k;r,p)=sum(k=1->;正无穷)k(k+r-1)。[k。(r-1)。p^r(1-p)^k=sum(k=1->;正无穷)(k+r-1)。[(k-1)。(r-1)。p^r(1-p)^kr(1-p)/p*sum(k=1->;正无穷)(k-1+r+1-1)。[(k-1)。(r+1-1)。p^(r+1)(1-p)^(k-1)【把k-1看做1个整体,r+1看做1个整体,p和(1-p)的指数凑成(k-1)和(r+1)的形式】r(1-p)/p*sum(n=k-1=0->;正无穷)(n+s-1)。[n。(s-1)。p^s(1-p)^n【n=k-1,s=r+1】r(1-p)/p*sum(n=0->;正无穷)f(n;s,p)r(1-p)/p*1【由归一性,sum(n=0->;正无穷)f(n;s,p)=1】r(1-p)/pEX^2=sum(k=0->;正无穷)k^2f(k;r,p)=sum(k=1->;正无穷)k^2(k+r-1)。[k。(r-1)。
概率题求出数学期望后怎么求方差? 楼主你好方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的希望你满意
求数学期望和方差 就没一个正经回答的X的期望=3/5,方差=1/25过程如下图:Y的期望=1/2,方差=1/20过程如下图: