ZKX's LAB

机器学习的多分类问题可用的模型都有哪些?各优缺点是什么?能用聚类算法代替吗? 聚类优缺点

2020-10-06知识18

k-means聚类算法优缺点? 相对于fuzzy c-means,hierarchical clustering,mixture of gaussian聚类算法有什么优缺点,有没有改进的…

机器学习的多分类问题可用的模型都有哪些?各优缺点是什么?能用聚类算法代替吗? 聚类优缺点

主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点. 主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法.聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似.三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益.二、基本思想的异同(一)共同点主成分分析法和因子分析法都是用少数的几个变量(因子)来综合反映原始变量(因子)的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85%以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。.

机器学习的多分类问题可用的模型都有哪些?各优缺点是什么?能用聚类算法代替吗? 聚类优缺点

聚类分析方法有什么好处 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。注意事项:1.系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;2.K-均值法要求分析人员事先知道样品分为多少类;3.对变量的多元正态性,方差齐性等要求较高。应用领域:细分市场,消费行为划分,设计抽样方案等优点:聚类分析模型的优点就是直观,结论形式简明。缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

机器学习的多分类问题可用的模型都有哪些?各优缺点是什么?能用聚类算法代替吗? 聚类优缺点

如何评价聚类结果的好坏 聚类定义回顾:把一个文档集合根据文档的相似性把文档分成若干类,究竟分成多少类,这个要取决于文档集合里文档自身的性质。回答1:基于不同算法,会有不同指标,通常较。

用于数据挖掘的聚类算法有哪些,各有何优势? 如果真要做全面介绍的话,有可能是一部专著的篇幅。即使是做综述性的介绍,一篇三五十页的论文也可以写成…

聚类分析的意义是什么 1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。扩展资料:聚类效果的检验:一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。二、使用判别分析方法进行判断,将SPSS生成的。

灰色聚类分析法的优缺点 聚类分析的方法很多,关键是分出来的类类内相似度高,类间相似度低,这是聚类效果比较好的表现,至于你说的优缺点,那就看看具体的算法,现在聚类算法很多也很混乱,你可以。

机器学习的多分类问题可用的模型都有哪些?各优缺点是什么?能用聚类算法代替吗? 多分类的机器学习方法有很多。举个新鲜的例子—深度残差收缩网络。可以看到,软阈值化是网络结构中…

数学建模中模糊聚类分析法的优缺点

在大数据分析中哪些聚类算法是最常使用的? 聚类算法那么多,并不清楚具体哪些才是真正用的到的,不能够选择性的学习.

#模糊聚类分析#分类变量#多变量分析#统计学#聚类

随机阅读

qrcode
访问手机版