简述方差分析基本原理 基本原理:就是计算其组间误差,其是服从F分布,求出F值,在依据F分布表来验证是否显著。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>;>;MSw(远远大于)。扩展资料:如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测。
参考答案:方差分析也可以同时分析两个或两个以上的因素,这就是多因素方差分析。
单因素方差分析NS是什么意思 试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。方差分析就是对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据试验指标的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。
方差分析为什么称为“方差”分析
什么是解释方差 解释方差就是:当有多个变量,分析单个变量与总方差的方差比为变量的解释方差