ZKX's LAB

椭圆的函数表达式? 椭圆函数初论

2020-10-06知识20

椭圆+导数 首先你要理解函数的定义。从非空数集A到非空数集B的一个映射f:A->;B叫做A到B的函数,记作y=f(x),其中,x属于A,y属于B。也就是说,椭圆是函数。只是自变量x与因变量通过影射关系。

椭圆的函数表达式? 椭圆函数初论

什么是椭圆函数论 椭圆函数是定义在有限复平面上亚纯的双周期函数。它和椭圆曲线存在密切关系。所谓双周期函数是指具有两个基本周期的单复变函数,即存在ω1,ω2两个非0复数,而对任意整数n,m,有f(z+nω1+mω2)=f(z),于是{nω1+mω2|n,m为整数}构成f(z)的全部周期。在复平面上任取一点a,以a,a+ω1,a+ω1+ω2,a+ω2为顶点的平行四边行的内部,再加上两个相邻的边及其交点,这样构成的一个半开的区域称为f(z)的一个基本周期平行四边形,将它平行移动nω1+mω2,当n,m取遍所有整数时,即得一覆盖整个复平面的周期平行四边形网,f(z)在每一个周期平行四边形中的性质都和它在基本周期平行四边形中的一样。如果复平面上两个点在平移到同一个基本周期四边形后重合,我们就把它们粘合成一个点,经过这样一系列操作之后,我们就得到复平面粘合后的一个商空间,即著名的椭圆曲线,它也是一个亏格1的紧的闭曲面。于是上面的椭圆函数就直接定义在椭圆曲线上。在基本周期平行四边形中,f(z)有以下性质:非常数椭圆函数一定有极点,且极点留数之和必为零,因而不可能只有一个一阶极点,有n个极点的椭圆函数称为n阶椭圆函数,它在基本周期平行四边形内取任一值n次,即对任意。

椭圆的函数表达式? 椭圆函数初论

椭圆函数解析式 笛卡尔平面上椭圆的曲线集A*x^2+2*B*x*y+C*y^2+D*x+E*y+F=0需满足:A,B,C,D,E,F为实系数,并且B^20,b>;0)a=b=R 时则为标准圆方程:x^2+y^2=R^2(R为圆半径)

椭圆的函数表达式? 椭圆函数初论

椭圆函数的介绍 双周期的亚纯函数。它最初是从求椭圆弧长时引导出来的,所以称为椭圆函数。椭圆函数论可以说是复变函数论在19世纪发展中最光辉的成就之一。

#椭圆函数#椭圆#椭圆曲线#平行四边形

随机阅读

qrcode
访问手机版