若(2x+ay)dx+3xdy是某函数的全微分,则a为多少?在线等 a=3某函数的全微分为 Pdx+Qdy,则有 P对y的偏导 等于 Q对x的偏导,
已知某函数的全微分,怎么求原函数? 题主的所谓四次方项集中在分母,自然是相同的(x+y)∧4,故用偏导数相等法有(?z/?y?x)(x+y)∧4=a(x+y)∧2-2(x+ay)(x+y)=-2y(x+y)即a(x+y)-2(x+ay)=-2yax+ay-2x-2ay=-2yax-2x=0 且-ay=-2y显然 a=2.
{(x+ay)dx+ydy}/(x+y)2为某函数的全微分。则a等于 若f(x,y)dx+g(x,y)dy为全微分需满足?f(x,y)/?y=?g(x,y)/?x?[(x+ay)/(x+y)2]/?y=(ax-2x-ay)/(x+y)3?[y/(x+y)2]/?x=-2y/(x+y)3 故(ax-2x-ay)/(x+y)3=-2y/(x+y)3(a-2)(x-y)/(x。
已知((x+ay)dx+ydy)÷(x+y)2为某函数的全微分,则a的值为 若f(x,y)dx+g(x,y)dy为全2113微5261分需满4102足1653f(x,y)/?y=?g(x,y)/?x[(x+ay)/(x+y)sup2;y(ax-2x-ay)/(x+y)sup3;[y/(x+y)sup2;x2y/(x+y)sup3;故(ax-2x-ay)/(x+y)sup3;2y/(x+y)sup3;(a-2)(x-y)/(x+y)sup3;0即a=2
多元函数全微分 如果是全微分的话,上面那个式子就应该是某个dw,而d(dw)=0,所以只要再做一次外微分令之等于0就可以求出a了.
已知[(x+ay)dx+ydy]/(x+y)^2为某个二元函数的全微分,则a= 设此二元函数为F(x,y),则Fx=(x+ay)/(x+y)^2,Fy=y/(x+y)^2Fxy=[a(x+y)^2-2(x+y)*(x+ay)]/(x+y)^4=[(a-2)x-ay]/(x+y)^3;Fyx=[(a-2)x-ay]=-2y/(x+y)^3;由Fxy=Fyx,得a-2=0(1)a=-2(2)右(1)(2)两式解得a=2.
为某函数的全微分,a则等于( ) 由(x+ay)dx+ydy(x+y)2为某函数的全微分,记该函数为f,则有:df=?f?xdx+?f?ydy,??x?f?y=??y?f?x,因此,?f?x=x+ay(x+y)2,?f?y=y(x+y)2??y?f?x=??yx+ay(x+y)2=a(x+y)2?2x+ay(x+y)3=(a?2)x?ay(x+y)3??x?f?y=??xy(x+y)2=?2y(x+y)3所以,(a?2)x?ay(x+y)3=?2y(x+y)3所以,a=2故选:D.