格林函数的物理意义是什么? 源函数,关联函数,传播子。名字太多了。核心就是点源和叠加原理。从数学上讲就是一个点源在确定边…
相关函数和协方差函数为什么相差aa 自协方差函数φ(τ)是归一化了的自相关函数γ(τ):即自相关函数γ(τ):除以方差σ2,就等于自协方差函数:φ(τ)=γ(τ)/σ2φ(0)=γ(0)/σ2=σ2/σ2=1
相关函数的协方差的性质 协方差的5261性质:1、Cov(X,4102Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方1653差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差函数定义为:若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:扩展资料协方差反映了两个变量之间的相关程度:协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。在第二个点,x与y变化一致且变化幅度都很大,因此其乘积必然较大,在第三个点,x。
如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…
协方差到底是什么意思啊? 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。扩展资料协方差函数在概率论和统计学中,协方差是一种两个变量如何相关变化的度量,而协方差函数或核函数,描述一个随机过程或随机场中的空间上的协方差。对于一个随机场或随机过程Z(x)在定义域D,一个协方差函数C(x,y)给出在两个点x和y的值的协方差:C(x,y)在两种情况下称为自协方差函数:在时间序列(概念一致,除了x和y指时间点而不是空间点),以及在多变量随机场(指变量自己的协方差,而不是互协方差)。参考资料来源:-协方差
时间序列分析-第四章 均值和自协方差函数的估计 最低0.27元开通文库会员,查看完整内容>;原发布者:hotyouthy第四章均值和自协方差函数的估计本章结构均值的估计自协方差函数的估计白噪声检验§4.1均值的估计相合性中心极限定理收抄敛速度X的模拟计算均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定袭。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考百虑相合性,渐进分布,收敛速度等问题。均值估计公式设x1,x2,xN是平稳列{Xt的观测。EXt的点估计为xN1Nxk1Nk把观测样本看成随机度样本时记作大写的X1,X2,XN相合性设统计量N是的估计,在统计学中有如下的定义^1如果EN,则称EN是的无偏估计。2如果当N,EN.则称N是的渐进无偏估计。3如果N依概率收敛到,则称N是的相知合估计。4如果Na.s.收敛到,则称N是的强相合估计。一般情况下,无偏估计比有偏估计来得好,对_于由(1.1)定义的XN。有EXN1N1EXkNk1N.k1N所以XN是均道值的无偏估计。均值估计的相合性好的估计量起码应是相合的。否则,估计量不收敛到要估计的参数,