ZKX's LAB

氢 钠原子光谱实验

2020-10-05知识4

氢原子光谱的光谱线公式 1885年瑞士物理学家J.巴耳末首先把上述光谱用经验公式:λ=Bn2/(n2-22)(n=3,4,5,·)表示出来,式中B为一常数。这组谱线称为巴耳末线系。当n→时,λ→B,为这个线系的极限,这时邻近二谱线的波长之差趋于零。1890年J.里德伯把巴耳末公式简化为:1/λ=RH(1/22-1/n2)(n=3,4,5,·)式中RH称为氢原子里德伯常数,其值为(1.096775854±0.000000083)×107m-1。后来又相继发现了氢原子的其他谱线系,都可用类似的公式表示。波长的倒数称波数,单位是m-1,氢原子光谱的各谱线系的波数可用一个普遍公式表示:σ=RH(1/m2-1/n2)对于一个已知线系,m为一定值,而n为比m大的一系列整数。此式称为广义巴耳末公式。氢原子光谱现已命名的六个线系如下:莱曼系 m=1,n=2,3,4,·紫外区 巴耳末系 m=2,n=3,4,5,·可见光区 帕邢系 m=3,n=4,5,6,·红外区 布拉开系 m=4,n=5,6,7,·近红外区 芬德系 m=5,n=6,7,8,·远红外区 汉弗莱系 m=6,n=7,8,9,·远红外区 广义巴耳末公式中,若令T(m)=RH/m2,T(n)=RH/n2,为光谱项,则该式可写成σ=T(m)-T(n)。氢原子任一光谱线的波数可表示为两光谱项之差的规律称为并合原则,又称里兹组合原则。对于核外只有一个电子的类氢原子(如He+,Li2+。

对氦氖谱线位置的测定在氢原子光谱实验实验中起什么作用 氢氘光谱的实验中,我们用已知的铁谱作为基准来研究氢氘谱线,这使我们对氢氘光谱的产生原理有了浓厚的兴趣。。

氢原子的光谱的谱线数是多少条?

氢原子光谱为什么是线状光谱? 氢原子的线状光谱,是氢原子内部能量量子化的表现。原子发光是原子从高能态向低能态跃迁时通过发光子释放能量的结果。1)电子和原子核一起绕原子的质心作角速度相同的圆运动;2)氢原子中的电子可能处在一系列不连续的轨道上作圆周运动;3)原子的光谱是原子不同轨道之间(也即不同能级之间)的相互跃迁的结果。玻尔考虑了电子和原子核两体运动后,电子和核的运动情况是:电子与核都绕它们的质心作同频率的圆运动.氢原子在正常状态时,它的能级最小,电子位于最小的轨道,当原子吸收或放出一定的能量时,电子就会在不同的能级间跃迁,多余的能量便以光子的形式向外辐射,从而形成氢原子光谱。原子能级图—按原子量子数对应能量大小的比例画出来的,称之原子的能级图图中纵坐标代表能量,每一条横线代表一个能级,对应于一个电子轨道在其轨道上的能量大小,横线之间的距离表示能级的间隔,即能差,表示电子在两个相邻轨道的能量差。能量越大,发射谱的波长越短;量子实验室,欢迎评论和关注。

玻尔氢原子模型成功解释了氢原子光谱的实验规律,氢原子能级图如图所示,当氢原子从n=4的能级跃迁到n=2的 根据E4-E2=hv知,辐射的光子频率为:v=E4?E2h=(3.4?0.85)×1.6×10?196.63×10?34 Hz=6.15×1014Hz,氢原子由n=4的能级直接跃迁到n=2的能级时,辐射的光子能量为:hv=-0.85eV+3.4eV=2.55eV.可知可以使金属铯发生光电效应.根据光电效应方程得:Ekm=hv-W0=2.55-2.25=0.3eV.故答案为:6.2×1014,0.3.

#光谱#能级#氢原子#电子

随机阅读

qrcode
访问手机版