一条毛巾要2个夹子,2个毛巾要3个夹子,10个夹子夹几条毛巾? 设毛巾为a,夹子为b,则有b=a+1当b=10,则a=9
晾一块毛巾需要2个夹子,7个夹子最多可以晾几块毛巾? 答:2113直线需要6个,挂个圈的话5261可以挂7个。(如果可4102以叠加的话那就乘以2的倍数吧)这个问题初始条件如上,最终要1653解决的问题就是:夹更多的毛巾如何让夹子用得最少?今天又想起来这个问题了,做了如下扩展思考,欢迎补充并找出更少:实际上,从语义分析上来看,因为挂毛巾需要毛巾面垂直于水平面,也就是说这个问题实际上可以归纳为一个N条固定长度线段在水平面内的共享端点问题。(平面几何问题)。假设一个夹子可以夹住任意多的毛巾,问题可以简化成只要尽可能多的共享线段的端点,则夹子数(端点数)就会越少。考虑到问题的实际性(挂毛巾为的是要晾晒毛巾,则要求毛巾尽量平展,即作为问题考虑的一边为直线段,不考虑弯曲),我直接想到的一个模型就是构造正六边形。共享一条边的两个正六边形加一条独立的边。还有其他的可能的平面图形能做到更少的端点么?(构造图形只能用长度相同的直线段)如果毛巾可以不那么平展—线段可以在总长度内有限度的弯曲,但仍然只能共享端点,则最少夹子用多少?构造何种图形?如果考虑夹子不仅仅加在端点上似乎意义不大?如果考虑到毛巾一定要平展,但是不一定需要毛巾面垂直于水平面,则用相同的长方形面。
在一条绳子上晒了十条毛巾,一共要多少个夹子 如果毛巾直接攀在2113绳子上,可以不用5261夹子如果一条4102毛巾用一个夹子,就是10个如果每条毛巾只1653要求夹住一角的话,可以两条毛巾共用一个夹子同时夹住各自的一个角,就需要5个夹子如果要求每条毛巾两头都有夹子夹的话,需要11个夹子如果要求每条毛巾两头都有夹子夹,而第一第十条毛巾的外边角不需要夹子的话,需要9个夹子。
在一条绳子上晾晒了10条毛巾,一共需要多少个夹子?再晒3条毛巾,至少要再添几个同样的夹子? 您好 根据生活经验,我们晾晒一条毛巾 需要两个夹子 两个毛巾的话 中间可以共用一个夹子,需要3个夹子 三条毛巾的话 中间共用2个夹子 需要四个夹子 那么 10条毛巾 就需要 。