ZKX's LAB

随机微分方程人口预测 各位金融工程大神们,你们的泛函分析、偏微分方程、随机分析、随机微分方程等等课程是自学吗?

2020-07-20知识16

完整学习测度论、实分析、随机微分方程需要多久时间? 这个要看你的学习效果了。一般很多实分析课本都有基本的泛函分析的内容。按照题主的情况,最终是想学随机微分方程(SDE),需要测度实分析随机过程的基础。如果你学习效果很好(这不大可能),很快就能进入SDE。不可能等你完全学会了前面的科目,再来弄SDE。SDE必须的预备知识如下概率论方面,概率测度,条件期望,概率极限定理,Poisson和Markov过程初步,鞅初步,Brown运动。这些是绝对必要的。推荐Ross《随机过程》。积分要会L-S积分(勒贝格-斯蒂尔切斯积分)。泛函分析如果懂内积空间和谱论,肯定能学会L-S积分,对理解期望有很大帮助。不过,不学泛函分析,可能也能学SDE。说实话,泛函分析一年不可能学懂。微分方程解的存在唯一性定理。推荐先学匡继昌《实分析与泛函分析》有题解,测度和分析基本上就够用了。网上有视频。Lang的实分析连微分流形都讲,看这本得看到猴年马月了SDE的书好多,水平差别巨大。龚光鲁有一本只要求初等概率、几乎不要求其他预备知识的SDE,先看看了解一下吧纯手打我是菜鸡,叫我雷锋什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳。完整学习测度论、实分析、随机微分方程需要多久时间? 有数分、线代、概率、常微的基础,会一点集合论。没有泛函、拓扑基础。对于实分析、测度,自学了年把,没…完整学习测度论、实分析、随机微分方程需要多久时间? 对了,补个说明。这张图把PDE和SDE联系起来的东西叫Feynman-Kac我可耻的默认题主是金数方向如其他答主所…线性微分方程与非线性微分方程的区别 对于一阶微分方程,形如:y'+p(x)y+q(x)=0的称为\"线性例如:y'=sin(x)y是线性的但y'=y^2不是线性的注意两点:(1)y'前的系数不能含y,但可以含x,如:y*y'=2 不是线性的x*y'=2 是线性的(2)y前的系数也不能含y,但可以含x,如:y'=sin(x)y 是线性的y'=sin(y)y 是非线性的(3)整个方程中,只能出现y和y',不能出现sin(y),y^2,y^3等等,如:y'=y 是线性的y'=y^2 是非线性的各位金融工程大神们,你们的泛函分析、偏微分方程、随机分析、随机微分方程等等课程是自学吗? 为什么我上学的时候就没有这些课程。当然我只是三流本科,二流硕士而已。你们觉得奔40的人了,还能自学这…随机微分方程与常微分方程的区别与联系 随机微分方程中带有标准布朗运动B(t)那项,它是关于过程B(t)的微分(这个微分实际不再是通常意义下的微分),而常微分方程中是关于一个普通变量的微分。主要区别在这一点,因为B(t)的运算规则与普通的微分不一样。什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳随机过程的一个样本函数;求y(t);2)my'‘+cy'+ky=0 其中 N(0,1);求自由振动y(t).等等随机微分方程,初始值是常数和随机变量有没有什么区别 信息流可能会有区别,毕竟如果初始时刻是0的话,花F0可测的需要几乎处处是常数。总之需要满足适应性嘛。所以两种情况信息流的形状可能会不一样。其他方面对于扩散过程几乎没什么区别了,只能要看具体遇到什么问题了。随机微分方程是解决什么问题的 《随机微分方程》(第6版)是《Universitext》丛书之一,是一部理想的研究生教材。2006年由世界图书出版社出版。该书内容做了较大的修改和补充,包括鞅表示论、变分不等式和随机控制等内容,书后附有部分习题解答和提示。随机微分方程在数学以外的许多领域有着广泛的应用,它对数学领域中的许多分支起着有效的联结作用。

#非线性#泛函分析#随机过程#微分方程#线性

随机阅读

qrcode
访问手机版