使用分类加法计数原理的条件是什么?
分类加法计数原理和分步乘法计数原理的公式是什么,A和C又各代表什么?求解,满意的话我一定采纳 分类要相加,分步要相乘。A是指阶乘,A(4/4)就是4×3×2×1 如果是C(2/4)就是(4×3)/(2×1)
试读结束,如需阅读或下载,请点击购买>;原发布者:天道酬勤能补拙分类加法计数原理与分步乘法计数原理1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.教材通关◆1.分类加法计数原理完成一件事有两类不同的方案,在第e799bee5baa6e997aee7ad94e4b893e5b19e313334336265341类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.[小题诊断]1.从3名男同学和2名女同学中选1人主持本班某次主题班会,不同选法种数为()A.6种 B.5种C.3种D.2种解析:由分类加法计数原理知总方法数为3+2=5(种).答案:B2.(优质试题·滨州模拟)甲、乙两人从4门课程中选修2门,则甲。
分类加法和分步乘法计数原理的依据分别是什么? 通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。⑴分类加法计数原理:完成一件事有几类法,各类法相互独立,每类法中又有多种不同的法,则完成这件事的不同法数是各类不同方法种数的和。⑵分步乘法计数原理:完成一件事,需要分成几个步骤,每一步的完成有多种不同的方法,则完成这件事的不同方法种数是各种不同的方法数的乘积。能用计数原理证明二项式定理;会用二项式定理解决与二项式有关的简单问题。
数学分类加法计数原理求解 分析:完成这件工作,共有两种方法,采用任一种方法都可以完成这件工作,符合分类加法原理。解:5+4=9(种)
【高二数学】分类加法和分类乘法计数原理》》》》 分两类进行;第一类:第一步甲中确定幸运之星,30种可能;第二步甲中确定幸运伙伴,除开幸运之星剩下29,有29种;第三步乙确定伙伴,20;根据分步乘法计数原理,N1=30*29*。
分类加法计数原理与分步乘法计数原理综合(共2问) 这道题如果是解答题的话要分2种情况:底面是一般三角形和正三角形.现考虑一般情况记棱台为:ABC-A'B'C'第一步:对于上底面取三种颜色进行全排列即可,总共有4*3*2=24第二步:对于下底面分两类:(1)A'与B或C相同,那么A'有2种取法,若A'与B同色,那么C'有2种,B'有2种,总共有2*2*2=8(2)A'与B和C都不同色,那么A'有1种,若C'与B同色,那么B'有2种;若C'与B不同色,那么C'有1种,B'有1种,总共有1*1*2+1*1*1=3所以一般情况总共有:24*(8+3)=264种对于4种颜色都要用到的情况:先考虑只用3种颜色的情况,上底面ABC有4*3*2=24种,下底面A'只能与B或C同色,而且一旦A'确定,B'和C'也唯一确定了,故下底面总共有2*1*1=2,3种颜色的总着色数是24*2=48种.因此4种颜色都用上的着色数是:264-48=216种对于底面是正三角形的特殊情况,通过旋转可以得到3次重复,如ABC分别为:红绿蓝,绿蓝红,蓝红绿,这三种实际是一种情况.因此对于底面为正三角形的情况,上面的结果分别为:264/3=88,216/3=72
分类加法计数原理和分步乘法计数原理的公式是什么,A 分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的。