ZKX's LAB

过氧钨酸盐结构 马荣华的主要论文

2020-10-04知识8

荧光物质为什么能发光呢?比如遥控器上的按键 荧光棒是有两种化学液体2113混合后产生化学反5261应,从而达到4102发光效果的。苯基草酸1653酯、过氧化氢。染料。过氧化氢把苯基草酸酯氧化成两个分子的酚,在这个过程中会产生一个高能量的中间物,这个中间物会把能量传给染料,电子激发态的染料不稳定,因此借放光而回倒稳定基态。这种光是由化学反应而产生,称为化学发光即冷光。荧光灯管发光原理荧光灯构造荧光灯是放电灯的一种,在玻璃管中充有容易放电的氩气和极少量的水银,在玻管内壁上涂敷有荧光物质,在管的两端有用钨丝制作的二螺旋或三螺旋钨丝圈电极,在电极上涂敷有发射电子的物质。荧光灯发光原理点灯(启动)时,电流流过电极并加热,从灯丝向着内发射出热电子,并开始放电。放电产生的流动电子跟管内的水银原子碰撞,发生紫外线(253.7nm)。这种紫外线照射荧光物质,变成可见光。随着荧光物质的种类不同,可发出多种多样的光色。荧光灯点灯方式为点亮荧光灯,要在涂敷发射体(电子发射性物质)的电极上通过预热电流使其处于易于放出电子的状态。按启动器方式不同,大致可分为,\"启动器式点灯电路\"、\"快速启动器式点灯电路\"、\"变频器式(电子式)点灯电路\"三种。启动器式点灯电路\"和\"快速启动器式点灯。

过氧钨酸盐结构 马荣华的主要论文

马荣华的主要论文 1.Synthesis,characterization and properties of polyaniline doped with iron substituted silicotungstate isomers Journal of coordination chemistry 2008,61(7):1056-1065(SCI检索)2.Synthesis,characterization and properties of polyaniline doped with transition metal substituted silicotungstate isomers Journal of coordination chemistry 2007,60(22):2421-2429(SCI检索)3.Synthesis and properties of polyaniline doped with cobalt substituted silicotungstate isomers with Keggin structure.Inorganic chemistry.2007,23(3):445-450(SCI检索)4.荧光导电聚合物β1-SiW11M/聚苯胺的固相合成及性质.无机化学学报.2007,23(1):51-56(SCI检索)5.钴镍取代杂多酸盐甘氨酸超分子化合物的合成及性质研究 无机化学学报 2006,22(6):1136(SCI检索)6.十一钨锌杂多配合物的合成及催化性能 无机化学学报 2000,16(4):688.(SCI检索)7.铁取代钨硅酸盐位置异构体的合成.表征及电化学性质 无机化学学报2001,17(1):144.(SCI检索)8.过氧铌杂多钨酸盐热分解动力学参数的测定 无机化学学报 2000,16(5):816.(SCI检索)9.过氧铌杂多配合物位置异构体的合成、表征及催化。

过氧钨酸盐结构 马荣华的主要论文

多金属氧酸盐的分类 同多酸和杂多酸是多金属氧酸盐化学的两大组成部分。早期的多酸化学研究者认为,无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子(如MoO4→Mo7O24,WO4→W7O24),其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子(如MoO4+PO4→PMo12O40),其酸为杂多酸。1.杂多酸分类杂多酸是POM化学的一大组成部分。杂多酸阴离子的通式为:在杂多酸中,作为配原子的元素最多的是Mo、W、V、Nb、Ta:而目前己知有近70余种元素可作为POM的杂原子,包括全部的第一系列过渡元素和全部的第二、第三系列过渡元素,再加上B、Al、Ga、51、Ge、Sn、P、As、Sb、Bi、Se、Tc和I等元素。同时,每种杂原子又往往可以以不同价态存在于杂多阴离子中,所以种类繁多。但有两大特点可作为分类的基础:一是杂原子与配原子的比值大多为定值;二是杂多酸阴离子中的杂原子的结构类型大多呈四面体型、八面体型和二十面体型三大类。杂原子具有四面体配位的杂多酸化合物杂原子与配原子的计量比为1:12A型这是一类最容易生成而又被广泛深入研究过的杂多酸化合物,[PMo12O40]、[PW12O40]、[Si Mo12O40]和[Si W12O40]是这一类型的典型代表。杂原子与配原子的计量比为2:18如[P2Mo18O。

过氧钨酸盐结构 马荣华的主要论文

怎么区分铁矿石的好坏? 磁铁矿 主要成分为2113Fe3O4,即四氧化三铁5261,每个Fe3O4分子中有两个+3价的铁原4102子和1一个+2价的铁原子,氧原子现1653-2价,其中Fe的质量分数约为72.3597945571%。等轴晶系。单晶体常呈八面体,较少呈菱形十二面体。在菱形十二面体面上,长对角线方向常现条纹。集合体多呈致密块状和粒状。颜色为铁黑色、条痕为黑色,半金属光泽,不透明。硬度5.5~6.5。比重4.9~5.2。具强磁性。磁铁矿中常有相当数量的Ti4+以类质同象代替Fe3+,还伴随有Mg2+和V3+等相应地代替Fe2+和Fe3+,因而形成一些矿物亚种,即:(1)钛磁铁矿 Fe2+(2+x)Fe3+(2-2x)TixO4(0),含TiO212%~16%。常温下,钛从其中分离成板状和柱状的钛铁矿及布纹状的钛铁晶石。(2)钒磁铁矿 FeV2O4或Fe2+(Fe3+V)O4,含V2O5有时高达68.41%~72.04%。(3)钒钛磁铁矿 为成分更为复杂的上述两种矿物的固溶体产物。(4)铬磁铁矿 含Cr2O3可达百分之几。(5)镁磁铁矿 含MgO可达6.01%。磁铁矿是岩浆成因铁矿床、接触交代-热液铁矿床、沉积变质铁矿床,以及一系列与火山作用有关的铁矿床中铁矿石的主要矿物。此外,也常见于砂矿床中。磁铁矿氧化后可变成赤铁矿(假象赤铁矿及褐铁矿),但仍能保持其原来的晶形。赤铁矿 赤铁矿。

晶体的形成过程是怎样的? 晶体是在物相转变的情况下形成的.物相有三种,即气相、液相和固相.只有晶体才是真正的固体.由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变.晶体生成的一般过程是先生成晶核,而后再逐渐长大.一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段;②成核阶段;②生长阶段.在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶.体系内各处首先出现瞬时的微细结晶粒子.这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上.这种形成结晶微粒子的作用称之为成核作用.介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作用.在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用.均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核.非均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核.因之在过冷却度很小时亦能局部地成核.在。

#玉#原子#分子和原子#杂多酸

随机阅读

qrcode
访问手机版