ZKX's LAB

光纤通信中的瑞利散射 如何抑制光纤通信系统中的瑞利散射

2020-10-04知识19

最低0.27元开通文库会员,查看完整内容>;原发布者:dreamchannelkd光纤的种类很多,分类2113方法也是各种各样的。从材料角度5261分 4102 按照制造光纤所用的材料分类1653,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。按传输模式分 按光在光纤中的传输模式可分为:单模光纤和多模光纤。多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,。

光纤通信中的瑞利散射 如何抑制光纤通信系统中的瑞利散射

光纤丝的原料 二 石英光纤是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且损耗也接近理论的最低值。所以多用于长距离的光信号传输。石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。

光纤通信中的瑞利散射 如何抑制光纤通信系统中的瑞利散射

如何区分荧光和磷光?其依据是什么? 荧光和磷光都是物质从激发态跃迁,自发辐射产生的.通常自发辐射强度都有一个衰减过程,衰减过程最初的一段时间内的辐射,称之为荧光,之后的衰减过程称之为磷光;瑞利光是光子遇到微小粒子散射产生的,锐利光的频率和入射光是同样的;拉曼光是入射光子和分子相互作用后产生,会生成两种频率成分,一种是入射光频率减去分子振动能级频率,一种是入射光频率加上分子振动能级频率,在频谱上,前一种称之为斯托克斯线,强度较大,后一种称之为反斯托克斯线,强度非常弱.在实际应用中,分布光纤温度传感器就使用拉曼散射来实现的,光纤通信中的拉曼放大器是用受激拉曼散射实现的.乐意讨论.

光纤通信中的瑞利散射 如何抑制光纤通信系统中的瑞利散射

#光纤损耗#光纤带宽#拉曼#荧光强度#荧光材料

随机阅读

qrcode
访问手机版