正弦函数的性质? 主要有以下几个:1.y=sinx是以2π作为最小正周期的周期函数。2.它有无数个对称轴,x=kπ+π/2。3.它的图像有无数个对称中心,(kπ.0)
正弦函数的性质 ①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1零值点:(kπ,0),k∈Z 既是轴对称图形,又是中心对称图形。s1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称s2)中心对称:关于点(kπ,0),k∈Z对称 在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.
正弦函数的函数及性质 正弦型函数解析式:y=Asin(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)作图方法运用“五点法”作图“五点作图法”即当ωx+φ分别取0,π/2,π,3π/2,2π时y的值.单位圆定义图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于 sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度 1,所以有了 sinθ=y/1。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于 1 查看无限数目的三角形的一种方式。即sinθ=AB,与y轴正方向一样时正,否则为负对于大于 2π 或小于 0 的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为 2π的周期函数。
正弦函数与正弦型函数的性质区别