概率论随机变量问题 离散型随机变量都是用求和的方法,而连续型都是求积分对于一维离散型随机变量,根据定义域,在定义域左边的分布函数部分都是0,而在右边部分都是1,中间每一段都是两临界点概率的和.例如它的分界点是0 1 2 概率分别是 0.2.
二维连续型随机变量独立的充要条件为 密度函数是f(x,y)能够写成g(x)和h(y)的乘积
二维离散型随机变量的 E(xy)怎么求? 离散型 离散型 离散型 不是连续型!!! 因为,(X,Y)是二维离散型随机变量所以,xy也是离散型随机变量先求出xy的概率分布列再求xy的期望比如P(x=0)=1/2,P(x=1)=1/2P(y=0)=1/2,P(y=1)=1/2则,P(xy=0)=3/4P(xy=1)=1/4所以,E(XY)=0×(3/4)+1×(1/4)=1/4如果随机变量X的所有可能的取值是有限或者可列无穷多个,那么它分布函数的值域是离散的,对应的分布为离散分布。常用的离散分布有二项分布、泊松分布、几何分布、负二项分布等。扩展资料:离散型随机变量在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:—随机变量
离散型随机变量与连续型随机变量的区别与特点~ 先说一个熟悉的内容,数列与函数.当然数列也是函数,但它的取值是自然数,取值是离散的,而一般的函数取值是某一个区间,在这区间内取值往往是可以连续的.离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量,比如,一次掷20个硬币,k个硬币正面朝上,k是随机变量,k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,因而k是离散型随机变量.如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量.
二维连续随机变量(X,Y),U=g(X,Y)为离散型随机变量怎么理解
二维离散型随机变量条件分布 XY的乘积必然为0在x,y平面内只有沿著两条轴的十字区才有定义域,并且是柱状(离散的)具体说一下密度怎么分布的不然没发求
离散型随机变量和连续型随机变量是什么意思?区别是什么? 离散变量是指2113其数值只能用自5261然数或整数单位计算的则为离散变量.例如4102,企业个数,职工1653人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用 计数方法取得.连续随机变量,在一定区间内可以任意取值的变量,其数值是连续不断的.,相邻两个数值可作无限分割,即可取无限个数值.例如,生产零件 的 规格尺寸,人体测量 的身高,体重,胸围等为连续变量,其数值只能用测量或计量的方法取得.区别离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等.连续型随机变量的实现值是属于不可数集合的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等.
能否像二维离散型随机变量的定义一样,连续型二维随机变量定义为其各分量都是那种随机变量