勒贝格测度的介绍 数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予一个体积的集合被称为勒贝格可测;勒贝格可测集A的体积或者说测度记作λ(A)。一个值为∞的勒贝格测度是可能的,但是即使如此,在假设选择公理成立时,R的所有子集也不都是勒贝格可测的。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。
勒贝格测度的结构 勒贝格测度的现代结构,基于外测度,是卡拉特奥多里发明的。固定。中的盒子是形如的集合,其中。这个盒子的体积定义为对于任何R的子集A,我们可以定义它的外测度λ(A):是可数个盒子的集合,它的并集覆盖了 然后定义集合A为勒贝格可测的,如果对于所有集合,都有:这些勒贝格可测的集合形成了一个σ代数。勒贝格测度定义为λ(A)=λ(A)对于任何勒贝格可测的集合A。根据维塔利定理,存在实数R的一个勒贝格不可测的子集。如果A是的任何测度为正数的子集,那么A便有勒贝格不可测的子集。
勒贝格测度当中的测度非常小的集合和零测集有什么本质的差别? 没钱和有一分钱还是有区别的…毕竟说起来是有,而不是没有。这就意味着后面勒贝格积分时候,没有的那个可以忽略,而很小的那个却不能忽略
勒贝格测度的例子 如果A是一个区间[a,b],那么其勒贝格测度是区间长度b?a。开区间(a,b)的长度与闭区间一样,因为两集合的差是零测集。如果A是区间[a,b]和[c,d]的笛卡尔积,则它是一个长方形,测度为它的面积(b?a)(d?c)。康托尔集是一个勒贝格测度为零的不可数集的例子。
若尔当测度和勒贝格测度什么区别? 谢邀,首先若当儿Jordan测度不是真正的测度measure,因为Jordan可测集本身不构成一个-代数,实际上它…
全体有理数的集合的勒贝格测度与区间[0,1]的勒贝格测度哪个大 全体有理数的集合的勒贝格测度是:0区间[0,1]的勒贝格测度是:1所以区间[0,1]的勒贝格测度大