ZKX's LAB

对数函数指数函数互化 求解指数函数与对数函数的方程,两者怎么互化?

2020-10-04知识16

求解指数函数与对数函数的方程,两者怎么互化? 解如图。

对数函数指数函数互化 求解指数函数与对数函数的方程,两者怎么互化?

关于对数函数与指数函数的转换 这个不是求出来的,是对数定义,也是指数与对数互化的依据.log5(4)=x(对数式)改成指数式就是5^x=4

对数函数指数函数互化 求解指数函数与对数函数的方程,两者怎么互化?

对数函数和指数函数如何互相转化?请写出转化公式。 楼主记住窍门:2^3=8,换为指数形式,只要3和8位置换一换,然后在2的左边+个LOG就可以了。同理,对数换指数也是3和8换位置,然后把LOG去掉就好了。

对数函数指数函数互化 求解指数函数与对数函数的方程,两者怎么互化?

指数函数与对数函数的转换公式

关于对数函数与指数函数的转换 对数函数的一般形式为2113 y=logax,它实际上就是指5261数函数的反函数(图象关于直线y=x对称的4102两函数互为反函数),可表1653示为x=a^y。因此指数函数里对于a存在规定—a>;0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>;1时,a越大,图像越靠近x轴、当0时,a越小,图像越靠近x轴。扩展资料:对数函数的基本性质如下:1、定义域为正实数集R+。2、值域为实数集R。3、当a>;1时,y=logax是定义域R+上的单调增函数,当0时,y=logax在定义域R+上是单调减函数。4、y轴是对数函数y=logax的渐近线。指数函数的基本性质如下:1、定义域为实数集R。2、值域为正实数集R+。3、当a>;1时,x=a^y在定义域R上为单调增函数,当0时,x=a^y在定义域R上为单调减函数。4、不论a>;1还是0,函数y=ax的图象都经过点(0,1),(1,a)和(-1,)。此三点称为指数函数图象上的三个特殊点,在作指数函数图象时,起着重要的作用。参考资料来源:—对数函数

指数函数和对数函数的运算公式 1对数的概念如果a(a>;0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>;0且a≠1,N>;0;③loga1=0,logaa=1,alogaN=N,logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2对数式与指数式的互化式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)3对数的运算性质如果a>;0,a≠1,M>;0,N>;0,那么(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM(n∈R).问:①公式中为什么要加条件a>;0,a≠1,M>;0,N>;0?②logaan=?(n∈R)③对数式与指数式的比较.(学生填表)式子ab=NlogaN=b名称a—幂的底数b—N—a—对数的底数b—N—运算性质am·an=am+nam÷an=(am)n=(a>;0且a≠1,n∈R)logaMN=logaM+logaNlogaMN=logaMn=(n∈R)(a>;0,a≠1,M>;0,N>;0)难点疑点突破对数定义中,为什么要规定a>0,且a≠1?理由如下:①若a,则N的某些值不存在,例如log-28②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为。

对数函数和指数函数如何互相转化?请写出转化公式. a>;0,a≠0,y>;0:a^x=yloga(y)=x再改写成y=loga(x)

怎么记对数和指数互化的公式啊? 举个例子吧,很简单的。比如指数函数,2^3(2的3次方)=8它的对数对应的是,log2 8=3就是把8和3换了,就这样记。

#指数函数#对数公式#对数函数

随机阅读

qrcode
访问手机版