数字图像处理 关于Otsu法选择最大化类间方差的阈值k () k的0~255循环求得每一个对应的fc=w0*(u0-ut).^2+w1*(u1-ut).^2;然后比较这256个fc中的最大值,对应的那个k就是ostu的阈值。所以你这个还差一个k的循环,并在循环里面求最大fc。我这也有段求阈值的,你可以参考下hist=zeros(256,1);直方图threshold=128;初始阈值计算直方图for i=1:heightfor j=1:widthm=I_gray(i,j)+1;hist(m)=hist(m)+1;endendhist=hist/(height*width);落在每一灰度级上的概率avg=0;for m=1:256avg=avg+(m-1)*hist(m);endtemp=0;for i=1:256p1=0;avg1=0;avg2=0;T_current=i-1;当前分割阈值for m=1:T_current-1p1=hist(m)+p1;低灰度级概率总和endp2=1-p1;高灰度级概率总和for m=1:256if mavg1=avg1+(m-1)*hist(m);elseavg2=avg2+(m-1)*hist(m);endendavg1=avg1/p1;avg2=avg2/p2;D=p1*(avg1-avg)^2+p2*(avg2-avg)^2;if D>;=tempfinalT=T_current;temp=D;endend
图像分割:Otsu大津算法阈值选择,绪:大津法OTSU是一种确定图像分割阈值的算法,由日本学者大津于1979年提出原理上来讲,该方法又称作最大类间方差法,有时也称之为大津。
如何对不规则图形做基于otsu算法的图像自适应阈值分割 难度不大,otsu算法的图像自适应阈值分割我稍微指点你。