总结偏微分方程的解法 可分为两大分支:解析解法和数值解法。只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。向左转|向右转扩展资料:导数(Derivative)是微积分学中重要的基础概念。对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x 0 的某个邻域△x内,极限定义如下f′(x 0)=△x→0lim△xf(x 0+△x)?f(x 0)(1.1)若极限存在,则称函数f(x)在点x 0 处可导,f′(x 0)称为其导数,或导函数,也可以记为 dxdf(x 0)。在几何上,导数可以看做函数曲线上的切线斜率。给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为F(x)=∫f(x)dx(1.2)其中F(x)称为f(x)的原函数。若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(Differentiable Function)。可微函数一定连续,但连续函数不一定可微。例如函数∣x∣为连续函数,但在点x=0处不。偏微分问题 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程抛物型偏微分方程的解的正则 (光滑性)若?呏0,则由初值问题解的表达式可看出,若u0(x,y,z)有界连续,则初值问题(1)、(2)的解u(x,y,z,t)当t>;0时都是无穷次连续可微的,而且关于空间变量x,y,z是解析的,关于时间变量t属于谢弗莱二类函数,即在|x|<;ρ内满足 当?扝0时,热传导方程解的可微性质与?的性质有关,例如为了得到热传导方程的古典解,除了需要假定?(x,y,z,t)连续以外,还要求对x,y,z或对t是赫尔德连续的。解的渐近性 如果边界上的温度以及热源密度与时间无关(),则热传导过程将趋于稳定状态,也就是当t→时,不管什么初始条件,物体内部温度总趋于同一个极限(稳定态的温度分布u(x,y,z)),它是椭圆边值问的解。解的半群性质 热传导是一个单向的不可逆过程,热总是由高温流向低温。如果边界温度为零,S(t)表示由初始时刻的温度场映到t时刻的温度场的线性解算子,由于热传导的不可逆性质,因此算子具有半群性质:①S(0)=I(I为恒同算子);②S(t+τ)=S(t)S(τ)t,τ≥0;由泛函分析中的希尔-吉田定理,存在一个相应的无穷小生成子A,S(t)=e-tA,使得具有齐次边条件的第一边值问题(1)、(2)、(3)的解具有明显的表达式,式中。抛物型偏微分方程的极值原理 一个内部有热源的热传导过程(即在方程(1)中?≥0),它的最低温度一定在边界上或初始时刻达到,这就是所谓的极值原理。事实上,还可以有更强的结论:①如果在t=T时在Ω内部某一点达到了最低温度,那么在这个时刻T以前(即t时)整个物体的温度等于常数,这就是所谓的强极值原理;②如果这个最低温度只在t=T时刻的某一边界点P达到,那么在这一点(n是嬠Ω的外法向),此即所谓的边界点引理。极值原理与边界点引理在热传导方程的研究中有很多应用,它的一个最直接的推论就是导出了热传导方程初边值问题解的唯一性和稳定性。至于初值问题(1)、(2)的解的唯一性,它与解在无穷远点的性态有关。如果对于初值问题(1)、(2),附加上无穷远点增长阶的限,这里A,M是任意给定正常数,那么由极值原理可以证明初值问题(1)、(2)的解必唯一。椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程偏微分方程可不可以用级数展开直接解? 指那些不能分离变量的方程(简单一点的话,线性方程),比如对称性比较低的量子力学问题。看了一下维基百…一阶线性微分方程解的结构是什么 对于2113一阶齐次线性微分方程,其通解形式为:对于5261一阶非齐4102次线性微分方程1653,其通解形式为:微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。扩展资料形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的次数为0或1。通常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。-一阶线性微分方程偏微分方程是什么? 偏微分方2113程的起源如果一个微分方程中出现的5261未知函4102数只含一个自变量,这个方程叫做常微分方1653程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。微积分。什么叫偏微分方程? 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。抛物型偏微分方程的反应扩散 形如的半线性抛物型方程组叫做反应扩散方程组。除了研究各种定解问题外,由于(8)的解常具有行波解u(v·x-сt)以及当t→时 u(x,t)趋于椭圆型方程组相应的边值问题的解(称为平衡解)这样的性质,因此以研究平衡解的稳定性为核心的各种问题就构成了半线性抛物型方程(组)的定性理论(或叫几何理论)。
随机阅读
- 侠客风云传武林任清 侠客风云传情圣路线能攻略夜叉吗
- 糖类,油脂,蛋白质都是高分子化合物这句话对吗 糖类高分子化合物
- 《复仇者联盟4》中的MVP是谁? 复仇者联盟4MVP排名图
- 风雨若水姐姐我不敢了 “不乱于心,不困于情,不畏将来,不念过往”是什么意思?
- 北碚区城市绿地系统规划文本 我国物业管理行业现状以及物业管理中经常出现的法律问题?
- 制备有机金属化合物
- 临沂河东未来发展方向,和兰山或者和罗庄相比有什么差距? 在兰山还是河东 房子
- 头孢替唑钠新生儿 婴儿输头孢替唑钠用做试敏吗
- 支付宝交电费显示此账单已经缴纳 你好用支付宝交电费为什么显示此帐单已缴纳怎么回事啊
- 介绍一下诗人顾城的生平。 水之灵主题曲
- 国宝特工我自横刀向天笑 去留肝胆两昆仑 我自横刀向天笑,去留肝胆两昆仑.英文是什么
- 中国制造出第一台双水内冷汽轮发电机是在什么时候问世的? 双水内冷发电机转子如何进水
- 世界重大发现纪录片 bbc十大经典纪录片都有什么?
- 我刚买了兰蔻的水分缘眼霜,大牌爱用者都进来分享一下经验吧 水份缘舒缓眼霜好不好
- 预应力是依靠钢筋端部的锚具来传递的 预应力张拉中的先张和后张各是什么?有什么区别?
- 今年国家鼓励养猪,鼓励养羊吗?脱贫有关于养殖业的扶持没? 关于公布农业部水产健康养殖示范场(第八批)名单的通知
- now直播深海寻宝活动 寻求一首歌曲~
- 通辽市科尔沁区区号 科尔沁区西门街道有哪些社区
- 四川奥赛龙化工科技 中国电视机厂总共有几家?
- 女孩子回答,请问你们会咬自己的男朋友吗?如果会,为什么要咬呢? 男友会要求你们咬吗