反比例函数的图像与性质 1.反比例函数Y=x/k(k≠0)的图象是双曲线.2.(1)k>;时,图像是位于一、三象限,在每个象限双曲线内,Y随X的增大而减小.(2)k时,图像是位于二、四象限,在每个象限的双曲线内,Y随X的增大而增大.(3)注:a.y=x/k中,x≠0,故双曲线的两支是不相连的.b.由于函数中x,y的值均不为0,所以双曲线的两个分支都无限的接近坐标轴,但永远不能和x轴、y轴相交.
反比例函数的意义与性质 性质:当k>0时,双曲线分布在一,三象限.在每一象限内,y随x的增大而减小当k<0时,双曲线分布在二,四象限.在每一象限内.y随x的增大而增大.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴 围 成的矩形面积为S1,S2则S1=S2=|K|意义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数.因为y=k/x是一个分式,所以自变量X的取值范围是X≠0.而y=k/x有时也被写成xy=k取值范围:① k≠0;②在一般的情况下,自变量 x 的取值范围可以是 不等于0的任意实数;③函数 y 的取值范围也是任意非零实数.
反比例函数的性质是什么? 反比例函数 y=k/x(k为不等于0的常数)的图象是双曲线。性质是:1.当k>;0时,其图象的两支分别在第一,三象限内,呈下降趋势。在每个象限内y随x的增大而减小。2.当k时,其图象的两支分别在第二,四象限内,呈上升趋势。在每个象限内y随x的增大而增大。
反比例函数的性质
反比例函数的性质是什么? 函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k>;0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,函数在x0上同为减函数;k
反比例函数的函数性质 函数2113性质1、单调性当k>;0时,图象分别位于第5261一、三象限,4102每一个象限内,从左往右,y随x的增大而1653减小;当k时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。k>;0时,函数在x上同为减函数、在x>;0上同为减函数;k时,函数在x上为增函数、在x>;0上同为增函数。2、面积在一个反比例函数图像上任取两点,过点分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为|k|反比例函数上一点 向x、y 轴分别作垂线,分别交于y轴和x轴,则QOWM的面积为|k|则连接该矩形的对角线即连接OM,则RT△OMQ的面积=?|k|。3、图像表达反比例函数图象不与x轴和y轴相交的渐近线为:x轴与y轴。k值相等的反比例函数图象重合,k值不相等的反比例函数图象永不相交。k|越大,反比例函数的图象离坐标轴的距离越远。4、对称性反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图象也是轴对称图形,其对称轴为y=x或y=-x;反比例函数图象上的点关于坐标原点对称。图象关于原点对称。若设正比例函数y=mx与反比例函数 交于A、B两点(m、n同号),那么A B两点关于原点对称。反比例函数关于正比例函数y=±x轴对称,并且关于原点中心对称。扩展资料:1、。